• Title/Summary/Keyword: X-ray sensitive paste

Search Result 5, Processing Time 0.026 seconds

Fabrication of ITO-less Sustain Electrodes for High Resolution Plasma Display Panel by X-Ray Lithographic Process

  • Ryu, Seung-Min;Yang, Dong-Yol;So, Jae-Yong;Park, Lee-Soon;Cheong, Hee-Woon;Whang, Ki-Woong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.370-373
    • /
    • 2009
  • X-ray lithography was employed to fabricate ITO-less high resolution sustain electrodes for plasma display panel (PDP). A polyimide film based X-ray mask and Xray sensitive Ag electrode paste were fabricated to check their effect on the patterning of Ag electrodes with less than 30 ${\mu}m$ in width. The X-ray lithographic method was found to be useful for the high resolution sustain electrode patterns due to the high penetration power and low scattering property of X-ray source.

  • PDF

Material Design for the Fabrication of Barrier Ribs with High Aspect Ratio of Plasma Display Panel by X-ray Lithography

  • Ryu, Seung-Min;Yang, Dong-Yol;So, Jae-Yong;Park, Lee-Soon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.989-992
    • /
    • 2008
  • X-ray lithography is one of the most powerful processes in the fabrication of nano/micro structures with a high aspect ratio. This process enables the fabrication of ultra-thin barrier ribs for PDP using X-ray sensitive paste. In this paper, organic material including photo-monomers, photo-oligomers, binder polymer and additives as well as inorganic powders with different size were optimized to fabricate high aspect ratio barrier rib pattern for PDP.

  • PDF

Influence of Nanostructured TiO2 Electrode Fabricated with Acid-treated Paste on the Photovoltaic Efficiency of Dye-Sensitized Solar Cells (산처리된 페이스트로 제조한 나노 구조체 TiO2 전극이 염료감응형 태양전지의 효율에 미치는 영향)

  • Lee, Jae-Wook;Hwang, Kyung-Jun;Roh, Sung-Hee;Kim, Sun-Il
    • Applied Chemistry for Engineering
    • /
    • v.18 no.4
    • /
    • pp.356-360
    • /
    • 2007
  • Recently, dye sensitized solar cells (DSSCs) composed of nanoporous $TiO_2$, light-sensitive dyes, electrolytes, and counter electrode have been received much attention. Nanostructured particles with higher surface area for the higher adsorption of Ru (II) dye are required to increase the quantity of light absorption. Also, it has been reported that the key factor to achieve high energy conversion efficiency in the photoelectrode of DSSC is the heat treatment of $TiO_2$ paste with acid addition. In this work, we investigated the influence of acid treatment of $TiO_2$ solar cell on the photovoltaic performance of DSSC. The working electrodes fabricated in this work were characterized by X-ray photoelectron spectroscopy (XPS), extended X-ray absorption fine structure (EXAFS), field emission scanning electron microscope (FE-SEM), and atomic force microscope (AFM). In addition, the influence of nanostructured photoelectrode fabricated with the acid-treated paste on the energy conversion efficiency was investigated on the basis of photocurrent-potential curves. It was found that the influence of acid-treated paste on the photovoltaic efficiency was significant.

Low cost, highly sensitive and selective electrochemical detection of arsenic (III) using silane grafted based nanocomposite

  • Lalmalsawmi, Jongte;Zirlianngura, Zirlianngura;Tiwari, Diwakar;Lee, Seung-Mok
    • Environmental Engineering Research
    • /
    • v.25 no.4
    • /
    • pp.579-587
    • /
    • 2020
  • Novel silane grafted bentonite was obtained using the natural bentonite as precursor material. The material which is termed as nanocomposite was characterized by the Fourier Transform Infra-red (FT-IR) and X-ray diffraction (XRD) methods. The surface imaging and elemental mapping was performed using Scanning Electron Microscopic (SEM/EDX) technique. The electroanalytical studies were performed using the nanocomposite electrode. The electroactive surface area of nanocomposite electrode was significantly increased than the pristine bentonite or bare carbon paste based working electrode. The impedance spectroscopic studies were conducted to simulate the equivalent circuit and Nyquist plots were drawn for the carbon paste electrode and nanocomposite electrodes. A single step oxidation/reduction process occurred for As(III) having ΔE value 0.36 V at pH 2.0. The anodic stripping voltammetry was performed for concentration dependence studies of As(III) (0.5 to 20.0 ㎍/L) and reasonably a good linear relationship was obtained. The detection limit of the As(III) detection was calculated as 0.00360±0.00002 ㎍/L having with observed relative standard deviations (RSD) less than 4%. The presence of several cations and anions has not affected the detection of As(III) however, the presence of Cu(II) and Mn(II) affected the detection of As(III). The selectivity of As(III) was achieved using the Tlawng river water sample spiked with As(III).

Inorganic-organic nano-hybrid; Preparation of Nano-sized TiO$_2$ Paste Trapped OMC Nano-emulsion and it's Application for Cosmetics (OMC Nano-emulsion을 포집하고 있는 Nano-TiO$_2$-Paste의 합성과 화장품의 응용)

  • Byung Gyu, Park;Jong Heon, Kim;Jin Hee, Im;Kyoung Chul, Lee
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.30 no.2
    • /
    • pp.181-187
    • /
    • 2004
  • Preparations of mesoporous materials using various templates and their applicability have been intensively investigated for many years. We studied on synthesizing mesoporous Ti02 with pores in which sensitive compounds having weak physico-chemical properties such as thermal or UV irradiation and low solubility in solvent are trapped. Prior to trapping OMC in the pores of mesoporous titania, OMC was nano-emulsified in O/W system using Lecithin. Thereafter the OMC was trapped in the pores of mesoporous titania using sol-gel method. Main focus of this work is to prepare OMC-trapped mesoporous titania and to trace the stability and solubility of nano-emulsified OMC in the pores of mesoporous titania, and compared with that of mesoporous silica. OMC-trapped mesoporous Inorganic-Organic hybrid titania showed higher factors in sun protecting and a skin penetration phenomenon was reduced.