• Title/Summary/Keyword: X-ray generation

Search Result 272, Processing Time 0.036 seconds

Refinement of Ground Truth Data for X-ray Coronary Artery Angiography (CAG) using Active Contour Model

  • Dongjin Han;Youngjoon Park
    • International journal of advanced smart convergence
    • /
    • v.12 no.4
    • /
    • pp.134-141
    • /
    • 2023
  • We present a novel method aimed at refining ground truth data through regularization and modification, particularly applicable when working with the original ground truth set. Enhancing the performance of deep neural networks is achieved by applying regularization techniques to the existing ground truth data. In many machine learning tasks requiring pixel-level segmentation sets, accurately delineating objects is vital. However, it proves challenging for thin and elongated objects such as blood vessels in X-ray coronary angiography, often resulting in inconsistent generation of ground truth data. This method involves an analysis of the quality of training set pairs - comprising images and ground truth data - to automatically regulate and modify the boundaries of ground truth segmentation. Employing the active contour model and a recursive ground truth generation approach results in stable and precisely defined boundary contours. Following the regularization and adjustment of the ground truth set, there is a substantial improvement in the performance of deep neural networks.

Vessel skeletonization in X-ray angiogram for coronary artery roadmap generation (관상동맥의 로드맵 형성을 위한 X-ray angiogram 에서의 혈관골격추출)

  • Yun, Hyun-Joo;Song, Soo-Min;Kim, Myoung-Hee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2005.05a
    • /
    • pp.1661-1664
    • /
    • 2005
  • 본 논문에서는 computer-aided analysis 의 일환으로 X-ray 심혈관 조영도를 이용하여 관상동맥의 구조를 보여주는 방법에 대해 제시하고자 한다. 관상동맥 폐색증 환자들에게 시술되는 스텐트 삽입 시술이나 관상동맥 우회로 시술을 할 때에는 X-ray 의 조영 영상이 매우 중요한 시술의 기준이 되고 있으며, 조영 영상에서 혈관을 빠르고 정확하게 인식하는 것은 시술의 필수 조건이다. 이러한 시술중의 혈관구조 인식을 돕기 위하여 본 논문에서는 심혈관 조영 영상으로부터 관상동맥의 골격을 추출하기 위한 방법을 제안한다. 본 논문에서는 혈관 구조 추출을 위하여 3 단계 알고리즘을 제시한다. 첫번째 단계에서는 조영도에서 잡음을 제거하기 위하여 동질영역을 블러링할 수 있는 speckle reducing anisotropic diffusion 을 이용한 이미지 필터링을 수행한다. 이 필터링은 영상내 잡음을 제거하고 혈관의 경계선을 강화하여 정확한 영상인식을 가능하게 한다. 두번째 단계에서는 영상 내에서 보여지는 주요 혈관을 분할하는 것이다. 이 영상분할에는 canny edge detection 과 개선된 영역확장법(adaptive region growing)을 동시에 이용하는 복합적 분할기법이 수행된다. 세번째 단계에서는 형태학적 기법(Morphology)을 이용하여 분할결과의 부족한 부분을 보완하고 골격화를 수행하여 정확한 혈관 구조를 추출해낸다. 실험을 위해서는 정상인의 관상동맥 영상 뿐 아니라 혈관이 가늘어지는 폐색이 관찰되는 환자의 영상에 대해서도 실험하였다. 또한 논문에서 제시한 알고리즘에 대한 검증을 위하여 실험 결과들은 의료진의 감수를 거쳤다.

  • PDF

CHARACTERIZATION OF METALLIC CONTAMINATION OF SILICON WAFER SURFACES FOR 1G DRAM USING SYNCHROTRON ACCELERATOR

  • Kim, Heung-Rak;Kun-Kul, Ryoo
    • Journal of the Korean institute of surface engineering
    • /
    • v.32 no.3
    • /
    • pp.239-243
    • /
    • 1999
  • At Present, 200mm wafer technology is being applied for commercial fabrications of 64, 128, and 256 M DRAM devices, and 300mm technology will be evolved for 1G DRAM devices in the early 21th century, recognizing limitations of several process technologies. In particular recognition has been realized in harmful effects of surface contamination of trace metals introduced during devicing processes. Such a guide line for surface metal contamination has been proposed as 1E9 and 1E10 atoms/$\textrm{cm}^2$ of individual metal contamination for wafering and devicing of 1G DRAM, respectively, and so its measurement limit should be at least 1E8 atoms/$\textrm{cm}^2$. The detection limit of present measurement systems is 2E9 atoms/$\textrm{cm}^2$ obtainable with TRXFA(Total Reflection X-Ray Fluorescence Analysis). TRXFA is nondestructive and the simplest in terms of operation, and it maps the whole wafer surfaces but needs detection improvement. X-Ray intensity produced with synchrotron accelerator is much higher than that of conventional X-ray sources by order of 4-5 magnitudes. Hence theoretically its reactivity with silicon surfaces is expected to be much higher than the conventional one, realizing improvement of detection limit. X-ray produced with synchrotron accelerator is illuminated at a very low angle with silicon wafer surfaces such as 0.1 degree and reflects totally. Hence informations only from surface can be collected and utilized without overlapping with bulk informations. This study shows the total reflection phenomenon and quantitative improvement of detection limit for metallic contamination. It is confirmed that synchrotron X-ray can be a very promising alternative for realizing improvement of detection limit for the next generation devices.

  • PDF

Structural Changes in Isothermal Crystallization Processes of Synthetic Polymers Studied by Time-Resolved Measurements of Synchrotron-Sourced X-Ray Scatterings and Vibrational Spectra

  • Tashiro, Kohji;Hama, Hisakatsu
    • Macromolecular Research
    • /
    • v.12 no.1
    • /
    • pp.1-10
    • /
    • 2004
  • The structural changes occurring in the isothermal crystallization processes of polyethylene (PE), poly-oxymethylene (POM), and vinylidene fluoridetrifluoroethylene (VDFTrFE) copolymer have been reviewed on the basis of our recent experimental data collected by the time-resolved measurements of synchrotron-sourced wide-angle (WAXS) and small-angle X-ray scatterings (SAXS) and infrared spectra. The temperature jump from the melt to a crystallization temperature could be measured at a cooling rate of 600-1,000 $^{\circ}C$/min, during which we collected the WAXS, SAXS, and infrared spectral data successfully at time intervals of ca. 10 sec. In the case of PE, the infrared spectral data clarified the generation of chain segments of partially disordered trans conformations immediately after the jump. These segments then became transformed into more-regular all-trans-zigzag forms, followed by the formation of an orthorhombic crystal lattice. At this stage, the generation of a stacked lamella structure having an 800-${\AA}$-long period was detected in the SAXS data. This structure was found to transfer successively to a more densely packed lamella structure having a 400-${\AA}$-long period as a result of the secondary crystallization of the amorphous region in-between the original lamellae. As for POM, the formation process of a stacked lamella structure was essentially the same as that mentioned above for PE, as evidenced from the analysis of SAXS and WAXS data. The observation of morphology-sensitive infrared bands revealed the evolution of fully extended helical chains after the generation of lamella having folded chain structures. We speculate that these extended chains exist as taut tie chains passing continuously through the neighboring lamellae. In the isothermal crystallization of VDFTrFE copolymer from the melt, a paraelectric high-temperature phase was detected at first and then it transferred into the ferroelectric low-temperature phase at a later stage. By analyzing the reflection profile of the WAXS data, the structural ordering in the high-temperature phase and the ferroelectric phase transition to the low-temperature phase of the multi-domain structure were traced successfully.

Crystal Growth of $YCa_4O(BO_3)_3$ and Preparation of Device for Second Harmonic Generation ($YCa_4O(BO_3)_3$ 비선형광학 단결정 성장 및 Second Harmonic Generation 소자 제조에 관한 연구)

  • ;A.Y. Ageyev
    • Korean Journal of Crystallography
    • /
    • v.11 no.1
    • /
    • pp.16-21
    • /
    • 2000
  • (Yb/sub x/Y/sub 1-x/)Ca₄O(BO₃)₃ single crystals where x=0.3,8,15,20% were grown by Czochralski Method. The crystals grown under the optimum conditions were transparent and colorless with good crystal form. Using polarizing microscope, crystal defects such as parasite crystals and bubbles were detected depending on the composition of melts and pulling rates. The optimum growth parameters for high quality of single crystals were 15∼20 rpm of rotation rate and 2mm/h of pulling rate at the flow rate of 2 l/min of Nitrogen gas. The relationship between crystal axes and optical axes was investigated by optical crystallographic method, polarization technique and single crystal X-ray method. From the spectroscopic measurements, it was confirmed that there were strong absorption bands at 900 and 976.4 nm and strong emission band at 976.4 nm in Yb/sup 3+/ ion doped YCa₄O(BO₃)₃ crystal. For the application of second harmonic generation of 1.064 ㎛ laser, non-linear optical devices with θ=32.32° and Ψ=0°, λ/10 of flatness and the size of 6x8x5.73 mm were fabricated from the grown YCa₄O(BO₃)₃ crystal.

  • PDF

Development of Radiation Free Soft X-Ray Ionizer with Ion Control (완전차폐 및 이온조절형 연X선식 정전기제거장치의 개발)

  • Jeong, Phil Hoon;Lee, Dong Hoon
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.5
    • /
    • pp.22-27
    • /
    • 2016
  • The Electrostatic Charge Prevention Technology is a core factor that highly influences the yield of Ultra High Resolution Flat Panel Display and high-integrated semiconductor manufacturing processes. The corona or x-ray ionizations are commonly used in order to eliminate static charges during manufacturing processes. To develop such a revolutionary x-ray ionizer that is free of x-ray radiation and has function to control the volume of ion formation simultaneously is a goal of this research and it absolutely overcomes the current risks of x-ray ionization. Under the International Commission on Radiological Protection, it must have a leakage radiation level that should be lower than a recommended level that is $1{\mu}Sv/hour$. In this research, the new generation of x-ray ionizer can easily control both the volume of ion formation and the leakage radiation level at the same time. In the research, the test constraints were set and the descriptions are as below; First, In order not to leak x-ray radiation while testing, the shielding box was fully installed around the test equipment area. Second, Implement the metallic Ring Electrode along a tube window and applied zero to ${\pm}8kV$ with respect to manage the positive and negative ions formation. Lastly, the ion duty ratio was able to be controlled in different test set-ups along with a free x-ray leakage through the metallic Ring Electrode. In the result of experiment, the maximum x-ray radiation leakage was $0.2{\mu}Sv/h$. These outcome is lower than the ICRP 103 recommended value, which is $1{\mu}Sv/h$. When applying voltage to the metallic ring electrode, the positive decay time was 2.18s at the distance of 300 mm and its slope was 0.272. In addition, the negative decay time was 2.1s at the distance of 300 mm and its slope was 0.262. At the distance of 200 mm, the positive decay time was 2.29s and its slope was 0.286. The negative decay time was 2.35s and its slope was 0.293. At the distance of 100 mm, the positive decay time was 2.71s and its slope was 0.338. The negative decay time was 3.07s and its slope was 0.383. According to these research, the observation was shown that these new concept of ionizer is able to minimize the leakage radiation level and to control the positive and negative ion duty ratio while ionization.

Study of The Amorphous Selenium (a-Se) using 2-dimensional Device Simulator (2차원 소자 시뮬레이터를 이용한 비정질 셀레늄(a-Se) 분석)

  • Kim, Si-Hyoung;Kim, Chang-Man;Nam, Ki-Chang;Kim, Sang-Hee;Song, Kwang-Soup
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.10
    • /
    • pp.187-193
    • /
    • 2012
  • Digital X-ray image detector has been applied for medical and industrial fields. Photoconductors have been used to convert the X-ray energy to electrical signal on the direct digital X-ray image detector and amorphous selenium (a-Se) has been used as a photoconductor, normally. In this work, we use 2-dimensional device (2-D) simulator to study about physical phenomena in the a-Se, when we irradiate electromagnetic radiation (${\lambda}=486nm$) on the a-Se surface. We evaluate the electron-hole generation rate, electron-hole recombination rate, and electron/hole distribution in the a-Se using 2-D simulator. This simulator divides the device into triangle and calculates using interpolation method. This simulation method has been proposed for the first time and we expect that it will be applied for the development of digital X-ray image detector.

Fabrication and Characterization of Lead Oxide (PbO) Film for High Efficiency X-ray Detector (고효율 X선 검출기 적용을 위한 PbO 필름 제작 및 특성 연구)

  • Cho, Sung-Ho;Kang, Sang-Sik;Choi, Chi-Won;Kwun, Chul;Nam, Sang-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.329-329
    • /
    • 2007
  • Photoconductive poly crystalline lead oxide coated on amorphous thin film transistor (TFT) arrays is the best candidate for direct digital x-ray detector for medical imaging. Thicker films with lessening density often show lower x-ray induced charge generation and collection becomes less efficient. In this work, we present a new methodology used for the high density deposition of PbO. We investigate the structural properties of the films using X-ray diffraction and electron microscopy experiments. The film coatings of approximately $200\;{\mu}m$ thickness were deposited on $2"{\times}2"$ conductive-coated glass substrates for measurements of dark current and x-ray sensitivity. The lead oxide (PbO) films of $200\;{\mu}m$ thickness were deposited on glass substrates using a wet coating process in room temperature. The influence of post-deposition annealing on the characteristics of the lead oxide films was investigated in detail. X-ray diffraction and scanning electron microscopy, and atomic force microscopy have been employed to obtain information on the morphology and crystallization of the films. Also we measured dark current, x-ray sensitivity and linearity for investigation of the electrical characteristics of films. It was found that the annealing conditions strongly affect the electrical properties of the films. The x-ray induced output charges of films annealed in oxygen gas increases dramatically with increasing annealing temperatures up to $500^{\circ}C$ but then drops for higher temperature anneals. Consequently, the more we increase the annealing temperatures, the better density and film quality of the lead oxide. Analysis of this data suggests that incorporation and decomposition reactions of oxygen can be controlled to change the detection properties of the lead oxide film significantly. Post-deposition thermal annealing is also used for densely film. The PbO films that are grown by new methodology exhibit good morphology of high density structure and provide less than $10\;pA/mm^2$ dark currents as they show saturation in gain (at approximate fields of $4\;V/{\mu}m$). The ability to operate at low voltage gives adequate dark currents for most applications and allows voltage electronics designs.

  • PDF