• Title/Summary/Keyword: X-ray dose

Search Result 944, Processing Time 0.027 seconds

Comparison of the Effectiveness of Disinfection According to the Permanence of X-ray Irradiation for Preservation of Water-logged Cultural Heritages (수침 문화재 보존 처리에 있어 엑스선 조사의 연속성에 따른 살균력 효과 비교)

  • GyeongSeo Jo;YeongHyeok Kwak;MyeonJu Lee;Rea-Dong Jeong;Hae-Jun Park
    • Journal of Radiation Industry
    • /
    • v.17 no.4
    • /
    • pp.533-542
    • /
    • 2023
  • We developed an emergency national manual for preservation of cultural heritage using irradiation disinfection technic under flood disaster. And we examined its practicality with a critical radiation dose on fungi that occur at water-logged event in order to prevent fungal damage that occurs during submersion. The X-ray irradiation for this experiment was conducted at the Production Technology Research Institute located in Yeongcheon, Gyeongsangbuk-do. A disinfection critical dose of 12 kGy was selected for two types of fungi known to spread rapidly and are resistant to radiation to submerged cultural properties, and this experiments were conducted by setting a target dose of 12kGy at 8.37mA at 5MeV. Under the above conditions, only continuity of irradiated samples were completely disinfected. This suggests that continuity of irradiation is important for fungal disinfection.

Development and its Characteristics of the 40kV x-ray transmission anode target tube (40kV용 투과 양극형 x-ray tube의 개발 및 특성분석)

  • Kim, Sung-Soo;Kim, Do-Yun
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.3
    • /
    • pp.234-239
    • /
    • 2008
  • Tungsten and rhodium target tube for a 40 kV x-ray transmission anode was developed to apply to the hand-held XRF(X-Ray Fluorescence) apparatus and its characteristics were evaluated. From the measurement of the energy distribution and dose of x-ray, it was confirmed that our results were good agreements with the known ones. The optimum thickness of metal film deposited on Be window to extract the maximum dose were $2.6{\mu}m$ and $2.7{\mu}m$ in case of W-target tube and Rh-target tube, respectively. When it was continuously worked during 30 min. at 40 kV in tube voltage and at $60{\mu}A$ in tube current, the temperature at target did not exceed $50^{\circ}C$. Our results reveals that the 40 kV x-ray transmission anode tube can be applied to the hand-held XRF apparatus.

A Study on the Directional Dependence of Scatter Ray in Radiography (X선 촬영시 산란선 방향 의존성에 관한 연구)

  • Oh, Hyun-Joo;Kim, Sung-Soo;Kim, Young-Il;Lim, Han-Young;Kim, Heung-Tae;Lee, Who-Min;Kim, Hak-Sung;Lee, Sang-Suk
    • Journal of radiological science and technology
    • /
    • v.18 no.1
    • /
    • pp.63-70
    • /
    • 1995
  • In this pauper, the back, forward, side and $45^{\circ}$ oblique scatter dose were measured the X-ray exposure conditions 60, 80, 100, 120kV, FFD 100cm, FS $20\times20cm$, toward the $25\times25cm\times10\sim20cm$ of solid water, paraffin and MiX-DP phantom, and Pb, Cu, Al, and styrofoam meterials, by the electrometer and 5.3 cc ionization chamber. The obtained results are summarized as following. 1. The percentage depth dose(PDD) at the range of the diagnostic x-ray energy were appeared 50 % depth dose at the 2 cm depth with 60 kV, and 5 cm depth with 120 kV X-ray, 10 % depth dose at the 10 cm depth with 60 kV and 14 cm depth with 120 kV X-ray, 5 % below depth dose at the 20 cm depth. 2. The back scatter dose which were generated the surface of Pb, Cu and Al metal plates were 10 % below, and than the back scatter dose at the Pb plate were a most amount of these which were about 10 %, and were appeared the order of Cu and Al. 3. The percentage forward scatter were appeared from 50 % to 65 %, and the more phantom thicknees become, the more forward scatter were increased with the ratio of 5 % per 5 cm thickness. 4. The percentage back scatter which were generated the tissue equivalence meterials solid water, paraffin and MiX-DP were from 20 % to 40 %, and than the back scatter dose at the solid water were a mest amount of those, and paraffin and MiX-DP were appeared with the next values. 5. The percentage $90^{\circ}$ lateral and $45^{\circ}$ oblique side scatter dose were measured from 4 % to 12 %. a most amount of scatter dose which were generated from the patient in radiography were the forward scatter, the next values were the back scatter, the third values were the $90^{\circ}$ lateral scatter.

  • PDF

Evaluation and Analysis of Scattered Radiation Dose according to Factors in General X-ray Examination (일반엑스선영상검사의 인자에 따른 산란방사선량 평가 및 분석)

  • Dong-Kyung Jung;Myeong-Hwan Park;Jeong-Min Seo
    • Journal of radiological science and technology
    • /
    • v.47 no.1
    • /
    • pp.13-19
    • /
    • 2024
  • Control of scattered radiation is one of very important factors in the use of medical radiation. In general X-ray exam, the causes, measurement methods, and the kind of detectors of scattered rays within the radiation area are diverse. In this study, the dose of scattered ray was measured by changing the thickness of the polycarbonate phantom and the tube voltage. As a result of measurement of scattered radiation, the results show that the scattered dose significantly(p<.05) increased with growing of thickness of phantom in the tube voltage 40, 50 and 60 kVp(F(p)<.05, R2>64%). As tube voltage increased at all phantom thicknesses, the scattered dose also significantly(p<.05) increased(F(p)<.05, R2>69%). In cases where a significant correlation was shown, the coefficient of determination of more than 60% was shown in regression analysis. The results of this study can be used as data on scattered radiation dose according to the tube voltage and the object thickness in general X-ray imaging exam.

Development of Multi-Type Soft X-ray Ionizer using Radiation Dose Overlapped Effect (선량 중첩을 이용한 멀티형 연 X-선 정전기 제거장치의 개발)

  • Lee, Su Hwan;Lee, Dong Hoon
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.2
    • /
    • pp.28-31
    • /
    • 2018
  • In display and semi-conductor manufacturing process, there are numerous unstable factors such as particle concentration, minimal vibration, changes in magnetic field, or electrostatic that becomes an issue to be managed and controlled. In the recent, X-ray ionization is widely used that is neutralized by separating air or gas molecules in the area where the static must be resolved. The mono-type of X-ray ionizer was not capable to be used in $8^{th}$ generation panels manufacturing plant due to its insufficient ionizing coverage since the panel itself is approximately in $2m{\times}3m$. To resolve the current problem, the development of new type called, "Multi-type X-ray ionizer" has resulted in covering enough ionizing space in $8^{th}$ generation panels industry. Comparing mono and multi types with MCNPX code simulation, the multi one indicates more X-ray flux, efficiency, and ionization performance in comparison with either a mono-type or multi-type in array format. In addition, the ionizing efficiency of overlapping area with multi-type showed 30% higher effectiveness rate as to the ordinary mono-type.

The Effect on Patient Dose Reduction with Improvement of the Output Characteristics for Inverter Type X-ray Generator (인버터식 X선발생장치의 출력특성개선이 환자피폭선량 경감에 미치는 효과)

  • Roh, Mo-Eun;Lee, Seong-Kil;Kim, Young-Keun
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.13 no.1
    • /
    • pp.27-32
    • /
    • 2011
  • The conventional types of X-ray generators were bulky in physical size and heavy in weight, and the control accuracies of the output voltages were not always satisfactory. The high frequency switching inverter and converter technology on power conversion and control systems have been greatly closed up introducing power semiconductor devices. To decreasing the volume and the weight of high voltage transformer, and to stabilize ripple. In this paper, the newly developed x-ray generator in a low cost using duty modulation PWM inverter. This system verify improved performance by stabilize ripple of X-ray tube voltage and compared the reproducibility, linearity and dose in single phase, three phase and PSU.

  • PDF

A Study on Feasibility of Total Variation Algorithm in Skull Image using Various X-ray Exposure Parameters (다양한 X-ray 촬영조건을 이용하여 획득한 skull 영상에서의 Total Variation 알고리즘의 가능성 연구)

  • Park, Sung-Woo;Lee, Jong-In;Lee, Youngjin
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.5
    • /
    • pp.765-771
    • /
    • 2019
  • Noise in skull X-ray imaging is inevitable, which reduces imaging quality and diagnostic accuracy and increases errors due to the nature of digital imaging devices. Increasing the dose can attenuate noise, but that could lead to big problems with higher exposure dose received by patients. Thus, noise reduction algorithms are actively being studied at low doses to solve dose problems and reduce noise at the same time. Wiener filter and median filter have been widely used, with the disadvantages of poor noise reduction efficiency and loss of much information about imaging boundary. The purpose of this study is to apply total variation (TV) algorithm to skull X-ray imaging that can compensate for the problems of previous noise reduction efficiency to assess quantitatively and compare them. For this study, skull X-ray imaging is obtained using various kVp and mAs using the skull phantom using the X-ray device of Siemens. In addition, contrast to noise ratio (CNR) and coefficient of variation (COV) are compared and measured when noisy image, median filter, Wiener filter and TV algorithm were applied to each phantom imaging. Experiments showed that when TV algorithms were applied, CNR and COV characteristics were excellent under all conditions. In conclusion, we've been able to see if we can use TV algorithm to improve image quality and CNR could be seen to increase due to the decrease in noise as the amount of increased mAs. On the other hand, COV decreased as the amount of increased mAs, and when kVp increased, noise was reduced and the transmittance was increased, so COV was reduced.

A Study for Reduction of Radiation Dose in the Field of Diagnostic Radiology - A Point of Tube Voltage and Filtration - (진단방사선 영역에서 피폭선량 감소를 위한 기술적 연구 - 관전압과 부가여과판을 중심으로 -)

  • Ha, Ho-Young
    • Journal of radiological science and technology
    • /
    • v.15 no.1
    • /
    • pp.89-97
    • /
    • 1992
  • X-ray quality is identified numerically by half value layer(H.V.L) and the HVL is affected by the kVp and the amount of filtration in the useful beam. X-ray quality evaluated by H.L.D is influenced by kVp and filtration. Author had several experiments with phantom in diameter of 8 cm normal adult chest, for reduction of radiation dose of the patients in diagnostic radiology and got some results. 1. H.V.L is increased the thicker the filter and the higher the kVp. 2. If the kVp is increased from 60 to 120, the skin dose can be reduced as 34%(Skin dose of 60 kVp with 4 mmAl filter : 100%). 3. If the 4 mmAl filter with 60 kVp is added to x-ray tube, skin dose can be reduced as 23% than no filter. 4. Therefore high kVp and filtration can increase output to input dose ratio and 120 kVp and 4 mmAl filter were most effective for reduction of patient dose in chest radiography.

  • PDF

Development of Radiation Restrictor for Secondary Radiation Shielding of Mobile X-ray Generator (이동형 X선 발생장치의 2차 방사선 차폐를 위한 선속조절기 개발 연구)

  • Koo, Bon-Yeoul;Kim, Gha-Jung
    • Journal of radiological science and technology
    • /
    • v.41 no.5
    • /
    • pp.397-403
    • /
    • 2018
  • Mobile X-ray generators are used not in the radiation area but in open space, which causes the exposure of secondary radiation to the healthcare professionals, patients, guardians, etc., regardless of their intentions. This study aimed to investigate the shielding effect of the developed radiation restrictor to block the secondary radiation scattered during the use of mobile X-ray generator. Upon setting the condition of mobile X-ray generator with chest AP, spatial doses were measured by the existence of human equivalent phantom and radiation restrictor, and measured by the existences of phantom and radiation restrictor at the same length of 100 cm. Measurements were taken at intervals of 10 cm every $30^{\circ}$ from $-90^{\circ}$ (head direction) to $+90^{\circ}$ (body direction). Upon the study results, spatial doses in all direction were increased by 45% on average when using phantom in the same condition, however, they were decreased by 64% on average when using the developed radiation restrictor. The dose at 100 cm from the center of X-ray was $3.0{\pm}0.08{\mu}Gy$ without phantom and was increased by 40% with $4.2{\pm}0.08{\mu}Gy$ after phantom usage. The dose when using phantom and the developed radiation restrictor was $1.4{\pm}0.08{\mu}Gy$, which was decreased by 66% compared to the case without using them. Therefore, it is considered the scattered radiation can be shielded at 100-150 cm, the regulation of the distance between beds, effectively with the developed radiation restrictor when using mobile X-ray generators, which can lower the radiation exposure to the people nearby including healthcare professionals and patients.