• Title/Summary/Keyword: X-ray diffraction test

Search Result 476, Processing Time 0.032 seconds

Hard TiN Coating by Magnetron-ICP P $I^3$D

  • Nikiforov, S.A.;Kim, G.H.;Rim, G.H.;Urm, K.W.;Lee, S.H.
    • Journal of Surface Science and Engineering
    • /
    • v.34 no.5
    • /
    • pp.414-420
    • /
    • 2001
  • A 30-kV plasma immersion ion implantation setup (P $I^3$) has been equipped with a self-developed 6'-magnetron to perform hard coatings with enhanced adhesion by P $I^3$D(P $I^3$ assisted deposition) process. Using ICP source with immersed Ti antenna and reactive magnetron sputtering of Ti target in $N_2$/Ar ambient gas mixture, the TiN films were prepared on Si substrates at different pulse bias and ion-to-atom arrival ratio ( $J_{i}$ $J_{Me}$ ). Prior to TiN film formation the nitrogen implantation was performed followed by deposition of Ti buffer layer under A $r^{+}$ irradiation. Films grown at $J_{i}$ $J_{Me}$ =0.003 and $V_{pulse}$=-20kV showed columnar grain morphology and (200) preferred orientation while those prepared at $J_{i}$ $J_{Me}$ =0.08 and $V_{pulse}$=-5 kV had dense and eqiaxed structure with (111) and (220) main peaks. X-ray diffraction patterns revealed some amount of $Ti_{x}$ $N_{y}$ in the films. The maximum microhardness of $H_{v}$ =35 GN/ $M^2$ was at the pulse bias of -5 kV. The P $I^3$D technique was applied to enhance wear properties of commercial tools of HSS (SKH51) and WC-Co alloy (P30). The specimens were 25-kV PII nitrogen implanted to the dose 4.10$^{17}$ c $m^{-2}$ and then coated with 4-$\mu\textrm{m}$ TiN film on $Ti_{x}$ $N_{y}$ buffer layer. Wear resistance was compared by measuring weight loss under sliding test (6-mm $Al_2$ $O_3$ counter ball, 500-gf applied load). After 30000 cycles at 500 rpm the untreated P30 specimen lost 3.10$^{-4}$ g, and HSS specimens lost 9.10$^{-4}$ g after 40000 cycles while quite zero losses were demonstrated by TiN coated specimens.s.

  • PDF

Influence of Annealing Temperatures on Corrosion Resistance of Magnesium Thin Film-Coated Electrogalvanized Steel

  • Lee, Myeong-Hoon;Lee, Seung-Hyo;Jeong, Jae-In;Kwak, Young-Jin;Kim, Tae-Yeob;Kim, Yeon-Won
    • Journal of Surface Science and Engineering
    • /
    • v.46 no.3
    • /
    • pp.116-119
    • /
    • 2013
  • To improve the corrosion resistance of an electrogalvanized steel sheet, we deposited magnesium film on it using a vacuum evaporation method and annealed the films at $250-330^{\circ}C$. The zinc-magnesium alloy is consequently formed by diffusion of magnesium into the zinc coating. From the anodic polarization test in 3% NaCl solution, the films annealed at $270-310^{\circ}C$ showed better corrosion resistance than others. In X-ray diffraction analysis, $ZnMg_2$ was detected through out the temperature range, whereas $Mg_2Zn_{11}$ and $FeZn_{13}$ were detected only in the film annealed at $310^{\circ}C$. The depth composition profile showed that the compositions of Mg at $270-290^{\circ}C$ are evenly and deeply distributed in the film surface layer. These results demonstrate that $270-290^{\circ}C$ is a proper temperature range to produce a layer of $MgZn_2$ intermetallic compound to act as a homogeneous passive layer.

Mechanical Properties and Corrosion Resistance of Plasma Electrolytic Oxidation Coatings on AZ31 Magnesium Alloy

  • Park, Jae Seon;Jung, Hwa Chul;Shin, Kwang Seon
    • Corrosion Science and Technology
    • /
    • v.5 no.2
    • /
    • pp.77-83
    • /
    • 2006
  • The plasma electrolytic oxidation (PEO) process is a relatively new surface treatment technique that produces a chemically stable and environment-friendly electrolytic coating that can be applied to all types of magnesium alloys. In this study, the characteristics of oxide film were examined after coating the extruded AZ31 alloy through the PEO process. Hard ceramic coatings were obtained on the AZ31 alloy by changing the coating time from 10min to 60min. The morphologies of the surface and the cross-section of the PEO coatings were examined by scanning electron microscopy and optical microscopy, and the thickness of the coating was measured. The X-ray diffraction pattern of the coating shows that the coated layer consists mainly of the MgO and $Mg_2SiO_4$ phases after the oxidation reaction. The hardness of the coated AZ31 alloy increased with increasing coating time. In addition, the corrosion rates of the coated and uncoated AZ31 alloys were examined by salt spray tests according to ASTM B 117 and the results show that the corrosion resistance of the coated AZ31 alloy was superior to that of the un-coated AZ31 alloy.

N2 분위기에서 RF magnetron sputtering 방법으로 증착된 TiN박막의 열처리 온도에 따른 내마모 특성 및 표면구조특성 분석

  • Jang, Bu-Seong;Lee, Chang-Hyeon;Park, Chang-Hwan;Kim, Hwa-Min
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.166.1-166.1
    • /
    • 2016
  • 각종 부품의 내마모성 및 내식성을 개선하기 위해서 금속물질에 나노두께의 보호막층을 입혀 경도를 높이는 표면처리 기술이 개발되고 있다. TiN막은 기계적 경도, 내마모성 및 내식성이 우수하여 수없이 연구되어 왔으며 박막의 두께에 따라 다양한 색상표현이 가능하다는 연구도 진행되고 있다. 이러한 TiN 박막의 연구결과로 높은 경도와 강도를 요하는 절삭공구에 하드 코팅을 이용하여 높은 절삭력으로 고효율적인 작업환경을 조성할 수 있다. 기존에 연구되어 온 TiN박막은 Ar과 N2의 혼합가스 분위기에서 증착된 반면 본 실험에서는 영구자석을 이용한 고밀도 플라즈마로 높은 점착성과 균일한 박막 및 대면적 공정이 가능한 RF-magnetron sputtering방법을 이용하여 N2 분위기에서 TiN박막을 $100^{\circ}C{\sim}400^{\circ}C$의 온도범위에서 $100^{\circ}C$간격으로 열처리 후 증착하여 비교실험을 하였다. 이와 같이 제작된 TiN박막을 XRD(X-ray Diffraction)를 사용하여 결정성을 확인한 결과 온도가 높을수록 (111)방향의 결정성장이 뚜렷하게 나타났으며 그 외 Scratch Test와 HM-220(Micro-vicker's tester)를 사용하여 경도특성을 확인하고 SEM(Scanning Electron Microscope), AFM(Atomic Force Microscope)를 이용하여 박막의 표면형상을 측정하였다. 이러한 측정 결과로 향후에는 높은 내마모성 및 초경도가 요구되는 절삭공구 및 경질표면코팅이 필요한 금속산업분야에 적용이 가능 할 것이라 사료된다.

  • PDF

Ferroelectric Properties of Bi3.25La0.75Ti3O12 Thin Films Prepared by MOD (MOD 법으로 제작된 Bi3.25La0.75Ti3O12 박막의 강유전 특성)

  • 김경태;김창일;권지운;심일운
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.6
    • /
    • pp.486-491
    • /
    • 2002
  • We have fabricated $Bi_{3.25}La_{0.75}Ti_3O_12$ (BLT) thin films on the Pt/Ti/$SiO_2$/Si substrates using a metalorganic decomposition (MOD) method with annealing temperature from $550^{\circ}C$ to $750^{\circ}C$. The structural properties of BLT films examined by x-ray diffraction (XRD). From XRD analysis. BLT thin films show polycrystalline structure. The layered-perovskite phase was obtained by spin-on films at above $600^{\circ}C$ for 1h. Scanning electron microscopy (SEM) showed uniform surface composed of rodlike grains. The grain size of BLT films increased with increasing annealing temperature. The BLT film annealed at $650^{\circ}C$ was measured to have a dielectric constant of 279, dielectric loss of 1.85(%), remanent polarization of $25.66\mu C/\textrm{cm}^2$, and coercive field of 84.75 kV/cm. The BLT thin films showed little polarization fatigue test up to $3.5{\times}10^9$ bipolar cycling at 5 V and 100 kHz.

Improvement of Mechanical Interfacial Properties of Epoxy/Clay Nanocomposites Using Silane Intercalant (실란유기화제를 이용한 에폭시/클레이 나노복합재료의 기계적 계면 물성 향상)

  • Park, Soo-Jin;Seo, Dong-Il;Lee, Jae-Rock
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.10a
    • /
    • pp.125-128
    • /
    • 2001
  • In this wort, the $Na^+-MMT$ has organically modified with silane intercalant to prepare the polymer/clay nanocomposites. The pH. X-ray diffraction (XRD), and contact angles were used to analyze the surface properties of clay and the exfoliation phenomenon of clay interlayer, The mechanical interfacial properties of epoxy/clay nanocomposites were investigated by three-point bending test. From the experimental results. the surface modification made by silane intercalant on clay surface leads to an increase of distance of silicate layers, surface acid value. and electron acceptor parameter of organoclay. The treatments are also necessary and useful for epoxy to intercalate into the interlayer by interacting of electron donor-accepter between basic epoxy and clay surface. The mechanical interfacial properties of the nanocomposites was improved by the presence of dispersed clay nanolayer containing low content of organoclay in comparison with the conventional, which increase the interfacial adhesion between dispersed clay and epoxy resins.

  • PDF

A Study on the Physical Property and Damage Index of Decrepit Concrete Materials (노후 콘크리트 재료의 물성 및 손상도에 관한 연구)

  • Song, Jeong-Un;Park, Hoon;Kim, Seung-Kon
    • Explosives and Blasting
    • /
    • v.28 no.2
    • /
    • pp.59-68
    • /
    • 2010
  • Building demolition and blasting work in urban areas has a possibility which has an effect on the structural stability of nearby structures. In this study, the compressive strength and chemical composition of decrepit concrete materials were estimated by Schmidt rebound test and XRD phase analysis. The damage index of the concrete materials was calculated by measured P-wave velocities. It was revealed that the constituents of the concrete materials affect on the compressive strength. The damage index decreases with increasing compressive strength and decreasing impact energy.

Effect of Thermomechanical Treatment on the Phase Transformation and Superelasticity in Ti-Ni-Cu Shape Memory Alloy (Ti-Ni-Cu 형상기억합금의 상변태 및 초탄성에 미치는 가공열처리의 영향)

  • Lee, O.Y.;Park, Y.K.;Chun, B.S.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.7 no.4
    • /
    • pp.253-261
    • /
    • 1994
  • Transformation behavior and superelastic behavior of Ti-Ni-Cu alloys with various Cu content has been investigated by means of electrical resistivity measurement, X-ray diffraction, tensile test and transmission electron microscopy. Two types of heat treatment are given to the specimens: i) Solutions treatment. ii) thermo-mechanical treatment. The transformation sequence in solution treated Ti-Ni-Cu Alloys substituted by Cu for Ni up to 5at.% occurs to $B2{\rightleftarrows}B19^{\prime}$ and it proceeds in two stages by addition of 10at.%Cu, i. e, $B2{\rightleftarrows}B19{\rightleftarrows}B19^{\prime}$. Also, it has been found that Ti-30Ni-20Cu alloy transformed in one stage : $B2{\rightleftarrows}B19$. The thermo-mechanically treated Ti-47Ni-3Cu alloy transformed in two stages: B2${\rightleftarrows}$rhomboheral phase${\rightleftarrows}B19^{\prime}$, while transformation sequence in Ti-45Ni-5Cu and Ti-40Ni-10Cu alloy transformed as same as solution treated specimens. The critical stress for inducing slip deformation in solution treated and thermo-mechanically treated Ti-40Ni-10Cu alloy is about 90MPa and 320Mpa respectively.

  • PDF

Evaluation of Cu Effect on Corrosion Characteristics of Zr Alloys (지르코늄합금의 부식특성에 미치는 Cu 영향 평가)

  • Kim Hyun Gil;Choi Byung Kyun;Jeong Yong Hwan
    • Korean Journal of Materials Research
    • /
    • v.14 no.7
    • /
    • pp.462-469
    • /
    • 2004
  • The effect of Cu addition on the corrosion characteristics of Zr alloys that developed for nuclear fuel cladding in KAERI (Korea Atomic Energy Research Institute) was evaluated. The alloys having different element of Nb, Sn, Fe, Cr and Cu were manufactured and the corrosion tests of the alloys were performed in static autoclave at $360^{\circ}C$, distilled water condition. The alloys were also examined for their microstructures using the optical microscope and the TEM equipped with EDS and the oxide property was characterized by using X-ray diffraction. From the result of corrosion test more than 450 days, the corrosion rate of the Zr-based alloys was changed with alloying element such as Nb, Sn, Fe, Cr and especially affected by Cu addition. The corrosion resistance was increased with increasing the Cu content and the tetragonal $ZrO_2$ layer was more stabilized on the Cu-containing alloys.

Use of Stone Powder Sludge in Fly Ash-Based Geopolymer

  • Choi, Se-Jin
    • Architectural research
    • /
    • v.12 no.1
    • /
    • pp.49-55
    • /
    • 2010
  • Stone powder sludge is a by-product of the manufacturing process of crushed sand. Most of it is dumped with soil in landfills, and the disposal of stone powder sludge causes a major environmental problem. This paper investigates the applicability of stone powder sludge in fly ashbased geopolymer. For this, stone powder sludge was used to replace fly ash at a replacement ratio of 50% and 100% by weight. The compressive strength of the samples was measured and scanning electron microscopy/ energy dispersive spectroscopy (SEM/EDS) analysis and X-ray diffraction (XRD) were performed. The test results indicated that the optimum level of the alkali activator ratio ($Na_2SiO_3$/NaOH) for fly ash-based geopolymer using stone powder sludge was 1.5. The strength development is closely related to the NaOH solution concentration. In addition, the compressive strength of the sample cured at $25^{\circ}C$ was significantly improved between 7 days and 28 days, even though the strength of the sample showed the lowest value at 7 days. Microscopy results indicated that a higher proportion of unreacted fly ash spheres remained in the sample with 5M NaOH, and some pores on the surface of the sample were observed.