• 제목/요약/키워드: X-ray diffraction method-Patterson

검색결과 4건 처리시간 0.016초

X-線 廻折法을 利用한 벤지딘過鹽素酸鹽의 結晶構造에 關한 硏究 (II)結晶構造의 解析 (Studies on the Crystal Structure of Benzidine Perchlorate by X-ray Diffraction method (II) Crystal Structure Analysis)

  • 구정회;신현소;강만형
    • 대한화학회지
    • /
    • 제14권1호
    • /
    • pp.123-126
    • /
    • 1970
  • The approximate crystal structure of benzidine monoperchlorate has been determined by single crystal X-Ray diffraction technique and patterson method. As the molecule has a center of symmetry in it and location of perchlorate ion is symmetrically on the mirror plane in the unit cell, perchlorate ion is forming hydrogen bond with two -$NH_2$ groups in the different molecule. Thus, one molecule of benzidine and perchloric acid combines 1:1 by mole ratio.

  • PDF

The crystal and molecular structure of chlorpropamide

  • Koo, Chung-Hoe;Cho, Sung-Il;Yeon, Young-Hee
    • Archives of Pharmacal Research
    • /
    • 제3권1호
    • /
    • pp.37-49
    • /
    • 1980
  • Chlorpropamide, $C_{10}H_{13}N_{2}O_{3}SCI$, forms orthofombic crystals of space group $P_{2}_{ 1}2_{1}2_{1}$ with a 9.066 $\pm$ 0.004, b = 5.218 $\pm$ 0.003, c = 26, 604 $\pm$, 0.008 $\AA$, and four molecules per cell. Three dimensional photographic data were collected with Mo-K$\alpha$ radiation. The structure was determined using Patterson, Fourier and Difference syntheses methods and refined by the block-diagonal least-squares methods with anisotropic thermal parameters for all nonhydrogen atoms and isotropic thermal parameters for all hydrogen atomes. The final R value was 0.10 for the 1823 observed independent reflections. The dihedral angle between the planes through the benzene ring and the urea goup is 99$^{\circ}$. The conformational angle formed by the projection of the S-C(1) with that of N(1)-C(7) when the projection is taken along the S-N(1) bond is 76$^{\circ}$. The molecule appears to form with neighbouring molecules two hydrogen bonds, N(1)..H...O(3) and N(2)-H...0(2) of lengths 2.774 and 2.954$\AA$ respectively related by screw diads parallel to the a axis. Adjacent molecules parallel to b and c axis are bound together by van der Wasls forces.

  • PDF

炭酸水素루비듐의 結晶構造 (The Crystal Structure of Rubidium Hydrogen Carbonate ($RbHCO_3$))

  • 김문일
    • 대한화학회지
    • /
    • 제13권2호
    • /
    • pp.131-136
    • /
    • 1969
  • The crystal structure of rubidium hydrogen carbonate has been determined by single crystal X-ray diffraction method. the crystals are monoclinic with a = 15.05 $\AA$, b = 5.83 $\AA$, c = 4.02 $\AA$, and $\beta$ = $107^{\circ}.$ There are four chemical units per unit cell and the space-group was fixed as $C2-C^3_2$. Patterson and trial-and-error methods gave the approximate structure and its refinements were made by two-dimentional Fourier summation. The Co3 group is planar with tshhe C-O distances of 1.32 $\AA$, 1.32 $\AA$, and 1.33 $\AA$ within experimental error and the two $CO_3$ groups are linked together to form a complex anion [$H_2C_2O_6$] with the O-H${\cdot}{\cdot}{\cdot}$O distance, 2.53 $\AA.$ Two molecules of $RbHCO_3$ make the dimer structure with two hydrogen bonds. The values of reliability factor for $F_{(hol)}$, $F_{(hko)}$and $F_{(okl)}$are 0.15, 0.15 and 0.17 respectively. Each rubidium ion has eight oxygen neighbours with the Rb-O distances of 2.84~3.11 $\AA.$.

  • PDF

Controlled Conversion of Sodium Metal From Nuclear Systems to Sodium Chloride

  • Herrmann, Steven;Zhao, Haiyan;Shi, Meng;Patterson, Michael
    • 방사성폐기물학회지
    • /
    • 제19권2호
    • /
    • pp.233-241
    • /
    • 2021
  • A series of three bench-scale experiments was performed to investigate the conversion of sodium metal to sodium chloride via reactions with non-metal and metal chlorides. Specifically, batches of molten sodium metal were separately contacted with ammonium chloride and ferrous chloride to form sodium chloride in both cases along with iron in the latter case. Additional ferrous chloride was added to two of the three batches to form low melting point consolidated mixtures of sodium chloride and ferrous chloride, whereas consolidation of a sodium-chloride product was performed in a separate batch. Samples of the products were characterized via X-ray diffraction to identify attendant compounds. The reaction of sodium metal with metered ammonium chloride particulate feeds proceeded without reaction excursions and produced pure colorless sodium chloride. The reaction of sodium metal with ferrous chloride yielded occasional reaction excursions as evidenced by temperature spikes and fuming ferrous chloride, producing a dark salt-metal mixture. This investigation into a method for controlled conversion of sodium metal to sodium chloride is particularly applicable to sodium containing elevated levels of radioactivity-including bond sodium from nuclear fuels-in remote-handled inert-atmosphere environments.