• Title/Summary/Keyword: X-ray absorption fine structure (XAFS)

Search Result 15, Processing Time 0.025 seconds

Application of X-ray Absorption Spectroscopy (XAS) in the Field of Stabilization of As and Heavy Metal Contaminated Soil (비소 및 중금속 오염토양 안정화 분야에서의 X선 흡수분광법(XAS) 활용)

  • Lim, Jung Eun;Moon, Deok Hyun;Kim, Kwon-Rae;Ok, Yong Sik
    • Journal of Applied Biological Chemistry
    • /
    • v.58 no.1
    • /
    • pp.65-74
    • /
    • 2015
  • X-ray absorption fine structure (XAFS) analysis using X-ray absorption spectroscopy is being applied as a state-of-the-art method in a wide range of disciplines. This review article summarizes the overall procedure of XAFS analysis from the preparation of soil samples to the analysis of data in X-ray absorption near edge structure (XANES) region and extended Xray absorption fine structure (EXAFS) region. The previous studies on application of XANES and EXAFS techniques in environmental soil science field are discussed and classified them according to metal(loid)s (As, Cd, Cu, Ni, Pb, and Zn). A significant number of previous studies of XAFS application in the environmental soil science field have focused on the identification of Pb chemical species in soil. Moreover, XANES and EXAFS techniques have been widely used to investigate the contamination source via identification of metal species. Similarly, these techniques were applied to identify the mechanisms of metal stabilization in soil after application of various amendments, phytoremediation, etc.

Analysis of Wide-gap Semiconductors with Superconducting XAFS Apparatus

  • Shiki, S.;Zen, N.;Matsubayashi, N.;Koike, M.;Ukibe, M.;Kitajima, Y.;Nagamachi, S.;Ohkubo, M.
    • Progress in Superconductivity
    • /
    • v.14 no.2
    • /
    • pp.99-101
    • /
    • 2012
  • Fluorescent yield X-ray absorption fine structure (XAFS) spectroscopy is useful for analyzing local structure of specific elements in matrices. We developed an XAFS apparatus with a 100-pixel superconducting tunnel junction (STJ) detector array with a high sensitivity and a high resolution for light-element dopants in wide-gap semiconductors. An STJ detector has a pixel size of $100{\mu}m$ square, and an asymmetric layer structure of Nb(300 nm)-Al(70 nm)/AlOx/Al(70 nm)-Nb(50 nm). The 100-pixel STJ array has an effective area of $1mm^2$. The XAFS apparatus with the STJ array detector was installed in BL-11A of High Energy Accelerator Research Organization, Photon Factory (KEK PF). Fluorescent X-ray spectrum for boron nitride showed that the average energy resolution of the 100-pixels is 12 eV in full width half maximum for the N-K line, and The C-K and N-K lines are separated without peak tail overlap. We analyzed the N dopant atoms implanted into 4H-SiC substrates at a dose of 300 ppm in a 200 nm-thick surface layer. From a comparison between measured X-ray Absorption Near Edge Structure (XANES) spectra and ab initio FEFF calculations, it has been revealed that the N atoms substitute for the C site of the SiC lattice.

이차전지 양극활물질의 chemical state 측정을 위한 X0ray Induced Electron Emission Spectroscopy (XIEES)의 활용

  • 이재철;송세안;임창빈
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.167-167
    • /
    • 2000
  • 전지 재료의 충방전 과정 연구에는 X-선 분말회절(x-ray powder diffraction techniques)과 중성자회절을 많이 사용하였다. 하지만 이러한 분석기술은 long-range order의 구조에 관한 정보를 제공하는데 유용하지만 atomic scale의 구조에 관한 정보를 얻기에는 한계가 있다. Li 전지에서의 전기화학적 반응에서는 cathode 물질에 포함된 전이금속의 산화, 환원 반응에 의한 Li 이온의 intercalation (charge process)과 deintercalation (discharge process) 현상이 일어난다. 이러한 충방전 과정은 알려지지 않은 다양한 형태의 위상 변화를 동반하게 되는데 x-선 이나 중성자를 이용한 powder diffraction techniques 로는 단지 정성적인 결정학적 정보를 얻을 수 있다. 따라서 최근에 원자 단위의 local structure에 관한 정보와 electrochemical state에 관한 정보를 동시에 얻을 수 있는 X-ray Absorption Fine Structure (XAFS) 분석기술을 Li 전지분석에 활용하기 시작하였다. XAFS는 하나의 x-ray 흡수원자에 대해서 주변원자들의 원자구조에 관한 정보와 구성 원소의 electrochemical state에 관한 정보를 얻을 수 있는 분석방법이다. X-ray Induced Electron Emission Spectroscopy (XIEES)는 x-ray에 의해서 방출된 전자를 검출하여 스펙트럼을 얻는 기능을 함축적으로 나타낸 것으로, x-ray를 물질 표면에 조사하여 발생하는 광전자, Auger 전자, 이차전자 등을 전자검출기(Channel Electron Multiplier: CEM)로 검출하는 기능과, 시료를 투과한 x-ray와 시료에서 발생하는 형광 x-ray를 비례계수기로 검출하는 기능을 가지고 있다. 이러한 검출 능력을 바탕으로 EXAFS, XANES, Standing Wave Technique, Elemental Composition Analysis, DXRD, Total Reflection Technique 등을 이용하여 물질을 구성하고 있는 원소의 성분, 미세원자구조, 전자구조에 관한 정보를 얻을 수 있는 새로운 spectrometer이다. 본 연구에서는 자체 개발한 XIEES의 XAFS 기능을 이용하여 여러 가지 방법으로 제조한 LiMn2-xO4와 LiMnO2, MnO2에서 Mn K-absorption edge에 대한 chemical state 변화를 측정하였다. Absorption edge에서 chemical shift를 측정하기 위해서는 방사광 가속기 수준의 에너지 분해능(~0.3eV)이 필요하다. 이번 연구에서는 SiO2(3140) monochromator를 사용하고 여기에 맞는 적절한 parameter를 적용하여 x-ray 에너지 분해능을 포항방사광가속기 수준으로 개선하였다. XIEES에서 얻은 스펙트럼과 포항방사광가속기에서 얻은 스펙트럼을 비교하였다. Chemical shift가 일어나는 경향은 두 실험 결과가 잘 일치하였다.

  • PDF

Distribution of Co Ions in Ferromagnetic Zn (1-x) Co (x)O Films

  • Park, Chang-In;Seo, Su-Yeong;Kim, Jeong-Ran;Han, Sang-Uk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.166-166
    • /
    • 2012
  • We examined the distribution of Co ions of ferromagnetic n-type Zn(1-x)Co(x)O semiconducting films with the Co concentrations of 0.03~0.07 using x-ray absorption fine structure (XAFS) measurements at the Co and Zn K edges. Extended XAFS (EXAFS) revealed that Co ions mainly occupied the zinc sites of the films. X-ray absorption near edge structure (XANES) spectra demonstrated that the pre-edge peak of the Co K edge was substantially affected by the second neighboring Co ions at the zinc sites due to hybridizing of the Co 4p conduction electrons with the Co 3d bounded electrons. From XANES and EXAFS analysis using ab initio calculations, we found that Co ions uniformly occupied the zinc sites of the Zn (0.93) Co (0.07)O film, whereas the Co ions of the Zn (0.97) Co (0.03)O and Zn (0.95) Co (0.05)O films were substituted at localized zinc sites. The ferromagnetic properties of the Zn (0.93) Co(0.07)O film could be induced by direct interaction between the magnetic dipoles of the Co ions with a mean distance of 4.3 A or by Co 4p electron mediation.

  • PDF

In situ Structural Investigation of Iron Phthalocyanine Monolayer Adsorbed on Electrode Surface by X-ray Absorption Fine Structure

  • Kim, Seong Hyeon;Toshiaki Ohta;Gang, Gwang Hun
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.6
    • /
    • pp.588-594
    • /
    • 2000
  • Structural changes of an iron phthalocyanine (FePC) monolayer induced by adsorption and externally applied potential on high area carbon surface have been investigated in situ by iron K-edge X-ray absorption fine structure (XAFS) in 0.5 M $H_2S0_4.$ Fine structures shown in the X-ray absorption near edge structure (XANES) for microcrystalline FePC decreased upon adsorption and further diminished under electrochemical conditions. Fe(II)PC(-2) showed a 1s ${\rightarrow}$ 4p transition as poorly resolved shoulder to the main absorption edge rather than a distinct peak and a weak 1s ${\rightarrow}$ 3d transition. The absorption edge position measured at half maximum was shifted from 7121.8 eV for Fe(lI)PC(-2) to 7124.8 eV for $[Fe(III)PC(-2)]^+$ as well as the 1s ${\rightarrow}$ 3d pre-edge peak being slightly enhanced. However, essentially no absorption edge shift was observed by the 1-electron reduction of Fe(Il)PC(-2), indicating that the species formed is $[Fe(II)PC(-3)]^-$. Structural parameters were obtained by analyzing extended X-ray absorption fine structure (EXAFS) oscillations with theoretical phases and amplitudes calculated from FEFF 6.01 using multiple-scattering theory. When applied to the powder FePC, the average iron-to-phthalocyanine nitrogen distance, d(Fe-$N_p$) and the coordination number were found to be 1.933 $\AA$ and 3.2, respectively, and these values are the same, within experimental error, as those reported ( $1.927\AA$ and 4). Virtually no structural changes were found upon adsorption except for the increased Debye-Wailer factor of $0.005\AA^2$ from $0.003\AA^2.$ Oxidation of Fe(II)PC(-2) to $[Fe(III)PC(-2)]^+$ yielded an increased d(Fe-Np) (1 $.98\AA)$ and Debye-Wailer factor $(0.005\AA^2).$ The formation of $[Fe(II)PC(-3)]^-$, however, produced a shorter d(Fe-$N_p$) of $1.91\AA$ the same as that of crystalline FePC within experimental error, and about the same DebyeWaller $factor(0.006\AA^2)$.

Temperature-dependent Structural and Magnetic Properties of Diamagnetic $HgI_2$

  • Park, C.I.;Jin, Zhenlan;Hwang, I.H.;Yeo, S.M.;Han, S.W.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.291.1-291.1
    • /
    • 2013
  • We examined the temperature-dependent structural and magnetic properties of HgI2 in the temperature range of 300~400 K. HgI2 is a diamagnetic material and can be used for X-ray or γ-ray detectors. DCmagnetization measurements on HgI2 showed that there is a small but distinguishable change in its diamagnetic properties near 375 K. The magnetic property change is not expected because Hg and I are known as nonmagnetic elements. X-ray diffraction (XRD) measurements revealed a structural transition in the temperature of 350~400 K. Temperature-dependent x-ray absorption fine structure (XAFS) demonstrated that the chemical valence states of both Hg and I did not changed in the temperature range of 300~400 K. However, XAFS revealed that the bond-length disorder was slightly increased in the temperature range, particularly, near Hg atoms. The structural changes of HgI2 are likely related to its diamagnetic property change. We will discuss the relation between the diamagnetic properties and local structural properties of HgI2 in detail.

  • PDF

Combustion Generated Fine Particles, Trace Metal Speciation, and Health Effects

  • Linak, William P.
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2003.11a
    • /
    • pp.195-195
    • /
    • 2003
  • Combustion generated fine particles, defined as those with aerodynamic diameters less than 2.5 m, have come under increased regulatory scrutiny because of suspected links to adverse human health effects. Transition metals are of particular interest due to the results of a number of studies that have shown cardiopulmonary damage associated with exposure to these elements and their presence in coal, residual fuel oils, sewage sludge, and other combusted fuels and wastes. This lecture will review results from multi-di sciplinary studies being conducted at EPA and elsewhere examining the physical, chemical, and toxicological characteristics of combustion generated particles. The research describes how collaborative work between combustion engineers and health scientists can provide insight on how combustion processes affect particle properties and subsequent health effects as measured by a combination of in-vitro and in-vivo studies using a variety of animal models. The focus of this lecture is on the interdisciplinary approach required to address the problem. Difficulties are discussed. Engineering aspects involved in this approach are described in detail. Physical and chemical characterizations are performed using a variety of analytical approaches including new techniques of x-ray absorption fine structure (XAFS) spectroscopy and x-ray absorption near-edge structure (XANES) deconvolution of these spectra to gather metal speciation information.

  • PDF

Synthesis and Structural Properties of $VO_2$ Thin Films

  • Jin, Zhenlan;Park, Changin;Hwang, Inhui;Han, S.W.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.190.2-190.2
    • /
    • 2013
  • Vanadium dioxide ($VO_2$) has been widely attracted for academic research and industrial applications due to its metal-insulator transition (MIT) temperature close to room temperature. We synthesized VOx film on (0001) sapphire substrate with vanadium target (purity: 99.9%) using DC magnetron sputtering in Ar ambience at a pressure of $10^{-3}$ Torr at $400{\sim}700^{\circ}C$. The VOx film subsequently was annealed at difference temperatures in ambience of Ar and $O_2$ gas mixture at $60{\sim}800^{\circ}C$. The structural properties of the films were investigated using scanning electron microscopic (SEM), x-ray diffraction (XRD) and x-ray absorption fine structure (XAFS) measurements. SEM reveal that small grains formed on the substrates with a roughness surface. XRD shows oriented $VO_2$(020) crystals was deposited on the $Al_2O_3$(006) substrate. From I-V measurements, the electric resistance near its MIT temperature were dramatically changed by ${\sim}10^4$ during heating and cooling the films. We will also discuss the temperature-dependent local structural changes around vanadium atoms using XAFS measurements.

  • PDF

Synthesis and Temperature-Dependent Local Structural Properties of Ti2O3

  • Hwang, Inhui;Jin, Zhenlan;Park, Changin;Jiang, Bingzhi;Han, S.W.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.202.2-202.2
    • /
    • 2013
  • Ti2O3 is known as a typical Mott insulator with a transition temperature of near $200^{\circ}C$. Unlike VO2, Ti2O3 does not have a structural phase transition near the metal-insulator-transition (MIT) temperature. We investigated the temperature-dependent thermal vibration change using temperature-dependent x-ray absorption fine structure (XAFS) at Ti K-edge in the temperature range of 300~600 K. Ti2O3 powder and films were synthesized using thermal chemical vapor deposition (CVD) at $800{\sim}900^{\circ}C$. X-ray diffraction measurements show a single phased Ti2O3 at room temperature. XAFS confirmed no structural phase transition in the temperature of 300~600 K. A small but distinguishable structural disorder change was observed near the transition temperature. We will discuss the MIT behavior with the change of structural disorder.

  • PDF