• 제목/요약/키워드: X-ray Scattering

검색결과 449건 처리시간 0.025초

A Method for Absolute Determination of the Surface Areal Density of Functional Groups in Organic Thin Films

  • Min, Hyegeun;Son, Jin Gyeong;Kim, Jeong Won;Yu, Hyunung;Lee, Tae Geol;Moon, Dae Won
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권3호
    • /
    • pp.793-797
    • /
    • 2014
  • To develop a methodology for absolute determination of the surface areal density of functional groups on organic and bio thin films, medium energy ion scattering (MEIS) spectroscopy was utilized to provide references for calibration of X-ray photoelectron spectroscopy (XPS) or Fourier transformation-infrared (FT-IR) intensities. By using the MEIS, XPS, and FT-IR techniques, we were able to analyze the organic thin film of a Ru dye compound ($C_{58}H_{86}O_8N_8S_2Ru$), which consists of one Ru atom and various stoichiometric functional groups. From the MEIS analysis, the absolute surface areal density of Ru atoms (or Ru dye molecules) was determined. The surface areal densities of stoichiometric functional groups in the Ru dye compound were used as references for the calibration of XPS and FT-IR intensities for each functional group. The complementary use of MEIS, XPS, and FT-IR to determine the absolute surface areal density of functional groups on organic and bio thin films will be useful for more reliable development of applications based on organic thin films in areas such as flexible displays, solar cells, organic sensors, biomaterials, and biochips.

Phospholipid polymer can reduce cytotoxicity of poly (lactic acid) nanoparticles in a high-content screening assay

  • Kim, Hyung Il;Ishihara, Kazuhiko
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • 제1권2호
    • /
    • pp.95-104
    • /
    • 2014
  • The objective of this study was to evaluate the cytotoxicity of poly (lactic acid) (PLA) nanoparticles. We used a water-soluble, amphiphilic phospholipid polymer, poly (2-methacryloyloxyethyl phosphorylcholine-co-n-butyl methacrylate) (PMB30W), as a stabilizer for the PLA nanoparticles. The PLA nanoparticles and PMB30W-modified PLA (PLA/PMB30W) nanoparticles were prepared by evaporating tetrahydrofuran (THF) from its aqueous solution. Precipitation of the polymers from the aqueous solution produced PLA and PLA/PMB30W nanoparticles with a size distribution of $0.4-0.5{\mu}m$. The partial coverage of PMB30W on the surface of the PLA/PMB30W nanoparticles was confirmed by X-ray photoelectron spectroscopy (XPS) and dynamic light-scattering (DLS). A high-content automated screening assay (240 random fields per group) revealed that the PLA nanoparticles induced apoptosis in a mouse macrophage-like cell line (apoptotic population: 73.9% in 0.8 mg PLA/mL), while the PLA/PMB30W nanoparticles remained relatively non-hazardous in vitro (apoptotic population: 13.8% in 0.8 mg PLA/mL). The reduction of the apoptotic population was attributed to the phosphorylcholine groups in the PMB30W bound to the surface of the nanoparticle. In conclusion, precipitation of PLA in THF aqueous solution enabled the preparation of PLA nanoparticles with similar shapes and size distribution but different surface characteristics. PMB30W was an effective stabilizer and surface modifier, which reduced the cytotoxicity of PLA nanoparticles by enabling their avoidance of the mononuclear phagocyte system.

문 개폐 여부와 차폐체 설치 유무에 따른 공간산란선량 측정 : X선 촬영 시 피폭선량 감소방안에 대한 연구 (Measurement of the Spatial Scattering Dose by Opening, Closing Door and Installing Shielding : A Study on the Reduction of Exposure Dose in Radiography)

  • 윤홍주;이용기;이인자
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제42권6호
    • /
    • pp.477-482
    • /
    • 2019
  • Recently, due to the increased use of medical radiation, the radiation exposure of radiation workers should be considered as well as medical exposure of patients. And it is recommended to close the door during radiography. however, In this study, when the door was inevitably opened for radiography, the proposed method was to install the shield as a method of reducing the exposure dose. And its efficiency was analyzed. In simple chest radiography, the measurement point was changed according to the measurement location. Dose rate were measured 10 times for each condition using a dosimeter. And the average value was derived. Using this, the change of dose according to the opening and closing of the door and the installation of the shield was analyzed. Using this, we compared and analyzed the dose change according to the door opening and closing and the installation of the shield, and significance was verified through the SPSS ver. 24. Depending on whether the door was opened or closed, 11,215.35%, 159.0%, 101.9% increased in front of the door in the consol room, behind the wall and behind the lead glass. Depending on the installing of the shield, the 49.2%, 29.6%, 19.9%, 30.6% decrease in front of the door in the examination and consol room, behind the wall and lead glass. In addition, statistical analysis was showed that there were significant differences in both the results according to whether the door was opened or closed and shielding(p<.05). Close the door during radiography. However, when the door should be opened, it was confirmed that the dose rate were reduced by installing the shield. Therefore, to optimize radiation protection, it is recommended to install shields when opening the door.

Effects of Oxidation on the Order-disorder Transition in NiPt Alloy Nano Crystals

  • 서옥균;황재성;송다현;이지연;최정원;이수웅;강현철;노도영
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.253-253
    • /
    • 2012
  • The effects of oxidation on the order-disorder transition in NiPt bimetallic alloy crystal have been investigated using in-situ synchrotron x-ray scattering technique. The temperature dependence of the crystal structure and the order parameter were measured during in-situ heating and cooling under vacuum and oxygen environments. The order-disorder transition temperature of NiPt alloy crystals in vacuum was between $615^{\circ}C$ and $627^{\circ}C$. On the other hand under oxygen environment, the transition temperature decreases by about $31^{\circ}C$ after the oxidation. The change of the transition temperature can be explained by the formation of NiO crust on the surface of NiPt crystal, which alters the composition of the Ni and Pt atoms. Since the transition temperature depends sensitively on the Ni-Pt composition, the transition temperature changes as Ni atoms diffuse out to form NiO.

  • PDF

Characterizations of Modified Silica Nanoparticles(II) ; Preparation and Application of Silica Nanoparticles as a Environmentally Filler

  • Min, Seong-Kee;Bae, Deok-Kwun;Park, Sang-Bo;Yoo, Seong-Il;Lee, Won-Ki;Park, Chan-Young;Seul, Soo-Duk
    • 한국재료학회지
    • /
    • 제22권8호
    • /
    • pp.433-438
    • /
    • 2012
  • A chemical process involves polymerization within microspheres, whereas a physical process involves the dispersion of polymer in a nonsolvent. Nano-sized monodisperse microspheres are usually prepared by chemical processes such as water-based emulsions, seed suspension polymerization, nonaqueous dispersion polymerization, and precipitation polymerizations. Polymerization was performed in a four-necked, separate-type flask equipped with a stirrer, a condenser, a nitrogen inlet, and a rubber stopper for adding the initiator with a syringe. Nitrogen was bubbled through the mixture of reagents for 1 hr. before elevating the temperature. Functional silane (3-mercaptopropyl)trimethoxysilane (MPTMS) was used for the modification of silica nanoparticles and the self-assembled monolayers obtained were characterized by X-ray photoelectron spectroscopy (XPS), laser scattering system (LSS), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), elemental analysis (EA), and thermogravimetric analysis (TGA). In addition, polymer microspheres were polymerized by radical polymerization of ${\gamma}$-mercaptopropyl modified silica nanoparticles (MPSN) and acrylamide monomer via precipitation polymerization; then, their characteristics were investigated. From the elemental analysis results, it can be concluded that the conversion rate of acrylamide monomer was 93% and that polyacrylamide grafted to MPSN nanospheres via the radical precipitation polymerization with AAm in ethanol solvent. The microspheres were successfully polymerized by the 'graft from' method.

The photocatalytic activities of nano-titanium dioxide on the cotton fabrics for self-cleaning properties

  • Metanawin, Siripan;Metanawin, Tanapak;Panutumrong, Praripatsaya;Hathaiwaseewong, Sunee;Chaichalermvong, Tirapong
    • International Journal of Advanced Culture Technology
    • /
    • 제3권1호
    • /
    • pp.129-137
    • /
    • 2015
  • The study of photocatalysis of nano titanium dioxideon the cotton fabrics have been investigatedthrough self-cleaning properties. The mini-emulsion technique was employed to prepare the encapsulation of titanium dioxide nano particles in polystyrene beads prior used. The mini-emulsion was coated on the cotton fabrics using Pad-dry method.The loading amount of TiO2particles into the mini-emulsion were various from 1%wt to 40%wt. The particles sizes of the TiO2-encapsulated polystyrene mini-emulsion were investigated by dynamic light scattering. It was noticed that the particle size of the mini-emulsion was in the range of 100- 200 nm. The morphology of treated cotton fabrics were investigated using scanning electron microscopy. The crystal structure of TiO2-encapsulated PS mini emulsion which coated on cotton fabrics were examined by X-ray diffraction spectroscopy. In order to investigate the photocatalytic activities of TiO2 through the selfcleaning characteristics of the cotton fabrics, colorant stains were created on the samples. Coffee stains were used as colorant organic stains. The result shown that the coffee stained on the cotton fabrics significantly showed the improving of the self-cleaning properties under UV radiation.

Fruits Extracts Mediated Synthesis of Zinc Oxide Nanoparticles Using Rubus coreanus and its Catalytic Activity for Degradation of Industrial Dye

  • Rupa, Esrat Jahan;Gokulanathan, Anandapadmanaban;Ahn, Jong-Chan;Mathiyalagan, Ramya;Markus, Josua;Elizabeth, Jimenez Perez Zuly;Soshnikova, Veronika;Kim, Yeon-Ju;Yang, Deok-Chun
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2018년도 춘계학술발표회
    • /
    • pp.93-93
    • /
    • 2018
  • This study disclosed the aqueous fruits extract of Rubus coreanus as a sustainable agent for the synthesis of Rubus coreanus zinc oxide nanoparticle (Rc-ZnO Nps) using as a reducing and capping precursor for co-precipitation method. The development of Rc-ZnO was assured by white precipitated powder and analyzed by spectroscopic and analytical instruments. The UV-visible (UV-Vis) studies indicate the maximum absorbance at 357nm which confirmed the formation of ZnO Nps and the purity, functional group and monodispersity were assured by field emission transmission electron microscopy (FE-TEM), Fourier Transform Infrared (FTIR) Spectroscopy and dynamic light scattering (DLS). The X-ray powder diffraction (XRD) data revealed the Nps is 23.16 nm in size, crystalline in nature and possess hexagonal wurtzite structure. The Rc-ZnO Nps were subjected for catalytic studies. The Malachite Green dye was degraded by Rc- ZnO NPs in both dark and light (100 W tungsten) conditions and it degraded about 90% at 4 hours observation in both cases. The biodegradable, low cost Rc-ZnO NPs can be a better weapon for waste water treatment.

  • PDF

Effect of citrate coated silver nanoparticles on biofilm degradation in drinking water PVC pipelines

  • Nookala, Supraja;Tollamadugu, Naga Venkata Krishna Vara Prasad;Thimmavajjula, Giridhara Krishna;Ernest, David
    • Advances in nano research
    • /
    • 제3권2호
    • /
    • pp.97-109
    • /
    • 2015
  • Citrate ion is a commonly used reductant in metal colloid synthesis, undergoes strong surface interaction with silver nanocrystallites. The slow crystal growth observed as a result of the interaction between the silver surface and the citrate ion makes this reduction process unique compared to other chemical and radiolytic synthetic methods. The antimicrobial effects of silver (Ag) ion or salts are well known, but the effects of citrate coated Ag nanoparticles (CAgNPs) are scant. Herein, we have isolated biofilm causative bacteria and fungi from drinking water PVC pipe lines. Stable CAgNPs were prepared and the formation of CAgNPs was confirmed by UV-visible spectroscopic analysis and recorded the localized surface plasmon resonance of CAgNPs at 430 nm. Fourier transform infrared spectroscopic analysis revealed C=O and O-H bending vibrations due to organic capping of silver responsible for the reduction and stabilization of the CAgNPs. X-ray diffraction micrograph indicated the face centered cubic structure of the formed CAgNPs, and morphological studies including size (average size 50 nm) were carried out using transmission electron microscopy. The hydrodynamic diameter (60.7 nm) and zeta potential (-27.6 mV) were measured using the dynamic light scattering technique. The antimicrobial activity of CAgNPs was evaluated (in vitro) against the isolated fungi, Gram-negative and Gram-positive bacteria using disc diffusion method and results revealed that CAgNPs with 170ppm concentration are having significant antimicrobial effects against an array of microbes tested.

Unusual Facilitated Olefin Transport through Polymethacrylate/Silver Salt Complexes

  • Kim, Jong-Hak;Joo, Seung-Hwan;Kim, Chang-Kon;Kang, Yong-Soo;Jongok Won
    • Macromolecular Research
    • /
    • 제11권5호
    • /
    • pp.375-381
    • /
    • 2003
  • Silver salt complex membranes with glassy poly(methyl methacrylate) (PMMA) unexpectedly showed higher propylene permeance than those with rubbery poly(butyl methacrylate) (PBMA) where as neat PMMA is much less permeable to propylene than that of neat PBMA. Such unusual facilitated olefin transport has been systematically investigated by changing the side chain length of polymethacrylates (PMAs) from methyl, ethyl to butyl. The ab initio calculation showed almost the same electron densities of the carbonyl oxygens in the three PMAs, expecting very similar intensity of the interaction between carbonyl oxygen and silver ion. However, the interaction intensity decreases with the length of the alkyl side chain: PMMA > PEMA > PBMA according to wide angle X-ray scattering and FT-Raman spectroscopy. The difference in the interaction intensity may arise from the difference in the hydrophilicity of the three PMAs, as confirmed by the contact angle of water, which determines the concentrations of the ionic constituents of silver salts: free ion, contact ion pair and higher order ionic aggregate. However, propylene solubilities and facilitated propylene transport vary with the side chain length significantly even at the same concentration of the free ion, the most active olefin carrier, suggesting possible difference in the prohibition of the molecular access of propylene to silver ion by the side chains: the steric hindrance. Therefore, it may be concluded that both the hydrophilicity and the steric hindrance associated with the side chain length in the three PMAs are of pivotal importance in determining facilitated olefin transport through polymer/silver salt complex membranes.

펄스형 레이저 증착법으로 제조된 에피탁시 BST 박막의 구조 분석 (Analysis of structural properties of epitaxial BST thin films prepared by pulsed laser deposition)

  • 김상섭;제정호
    • 한국진공학회지
    • /
    • 제7권4호
    • /
    • pp.355-360
    • /
    • 1998
  • 250$\AA$과 1340$\AA$두께의 에피탁시($Ba_{0.5}Sr_{0.5}$)$TiO_3$(혹은 BST)박막을 MgO(001)단결정기 판에 펄스형 레이저 증착법(pulsed laser deposition)으로 제조한 후 방사광 X선 산란을 이 용하여 분석하였다. 박막은 초기에 MgO(001)단결정 기판과cube-on-cube관계로 증착되며, 박막이 성장함에 따라 이 관계를 계속 유지하면서 성장하는 것으로 판단된다. 한편 박막이 성장함에 따라 박막의 표면은 급격하게 거칠어지는 반면 기판과 박막 사이의 계면의 거칠기 는 크게 변하지 않았다. 에피탁시 BST박막의 초기상태에서는 c축이 기판과 수직한 방향으 로 배향된 정방정구조를 지녔으며, 아울러 기판의 수직(out-of-plane) 및 평형(in-plane)방향 으로의 모자익(mosaic)분포가 좁아짐을 확인하였다.

  • PDF