• Title/Summary/Keyword: X-ray Scattering

Search Result 448, Processing Time 0.033 seconds

MONTE CARLO SIMULATION OF COMPTONIZATION IN A SPHERICAL SHELL GEOMETRY

  • SEON KWANG IL;MIN KYOUNG WOOK;CHOI CHUL SUNG;NAM UK WON
    • Journal of The Korean Astronomical Society
    • /
    • v.27 no.1
    • /
    • pp.45-53
    • /
    • 1994
  • We present the calculation of X -ray spectra produced through Compton scattering of soft X-rays by hot electrons in the spherical shell geometry, using fully relativistic Monte Carlo simulation. With this model, we show that the power-law component, which has been observed in the low luminosity state of low-mass X-ray binaries (LMXBs), is explained physically. From a spectral. analysis, we find that spectral hardness is mainly due to the relative contribution of scattered component. In addition, we see that Wi en spectral features appear when the plasma is optically thick, especially in the high energy range, $E{\gtrsim}100keV$. We suggest that after a number of scattering the escape probability approaches an asymptotic form depending on the geometry of the scattering medium rather than on the initial photon spectrum.

  • PDF

A New Approach on the Correction for Compton Escape Component in X-Ray Unfolding Algorithm

  • Kim, Soon-Young;Kim, Jong-Kyung
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.05a
    • /
    • pp.925-930
    • /
    • 1995
  • A new approach on the correction for Compton escape component in X-ray unfolding algorithm was investigated to obtain more accurate X-ray source spectrum. The X-ray detector used in this study was a planar type HPGe detector(EG&G ORTEC, GLP-32340/13-P-LP) whose energy response has been blown and ISO narrow beam series were employed as source spectrum. At lower energy Part of measured X-ray spectrum including the correction for Compton escape component more accurate unfolded spectrum was obtained by letting down the starting energy level of the collection in existing spectrum correction procedure to consider multiple scattering effects. It is, from this study, concluded that accurate correction for Compton escape component is needed in X-ray unfolding procedure since Compton scattering becomes more important as incident X-ray energies increase.

  • PDF

Studios in Selected Grid Ratio of Objective Thickness on X-ray Exposure (X선촬영시(X線撮影時) 피사체(被寫體) 두께에 따른 격자비(格子比) 선정(選定)에 관한 연구(硏究))

  • Yoon, Chul-Ho;Chu, Sung-Shil;Huh, Joon
    • Journal of radiological science and technology
    • /
    • v.5 no.1
    • /
    • pp.21-34
    • /
    • 1982
  • When unattenuated x-ray radiation passes through the object it is transmitted and scattered from objectes and impinging on the film. During this process certain radiation is absorbed within the object and others transmitted in reduced scattering. The scattering radiation influence upon radiation image quality, confining x-ray beam which means scattering radiation produce increased fog on x-ray film image and as a consequence decrease contrast and less detail of the film there for the elimination of fog and for absorbing scattered radiation, the grid has been used between the object and the film in order to rid of scattering rays. Using grid is good method for the qualification of the better image as well as in using air gap technique. The grid is easy to manipulate and promote good efficiency which is defined by ICRU and JIS. It is the purpose to study for eliminating scattered radiation from the tissue equivalent acryl phantom using grid, we have studied and evaluated the grid permeability about the x-ray exposure, the selection of grid ratio according to phantom thickness, on x-ray exposure are performed as follows. 1. The penetrating ratio of primary x-ray is remarkably decreased by increasing of the grid ratio, but it is almost not influenced in KVP difference and phantom thickness. 2. The scattered radiation is proportionaly increased by thickness of the phantom, having nothing to do with grid ratios. 3. The relative between the penetration rate of primary and secondary x-ray is improved by increasing grid ratio, and decreased by phantom thickness, and slightly decreased by high tube voltage. 4. The grid of 5:1 and 10:1 ratio are adequate to the phantom of 10cm and 15cm thickness, respectively.

  • PDF

A Study on the Distribution of X-ray according to the Thickness of Soft Tissue in Radiography (X선촬영시(線撮影時) 연부조직(軟部組織) 두께에 따른 선량분포(線量分布)에 관(關)한 연구(硏究))

  • Park, Soung-Ock
    • Journal of radiological science and technology
    • /
    • v.11 no.2
    • /
    • pp.3-15
    • /
    • 1988
  • When X-rays were projected into a patient, there occured the phenomena such as penetration, absorption and scattering etc. The penetrating rays were recorded on films as X-ray image used for diagnosis but scattered rays caused the radiation hazard both to the patient, specialist and technicians. The soft tissue includes many organs which are sensitive to the radiation and in may occupy $40{\sim}50%$ of body weight. Therefore X-rays should be carefully projected to the patient and it is strongly recommended to analyse the distribution of X-rays, when ever the patient is exposed to X-rays. In this study, the distribution of X-ray according to the thickness, the radiation field and the tube voltages (kVp) in soft tissue, the following results were obtained: 1. Total transmitted rays which kept the step with X-ray tube voltage (kVp) increased in proportion to the increasing of X-ray tube voltage. 2. The scattered ray rate in the total transmitted ray was not significantly found with X-ray tube voltage. 3. The affecting factors of the scattered ray rate in total transmitted ray were shown through the radiation field and the thickness. 4. The dose of scattered ray by the angle was observed more in direction of primary ray ($0^{\circ}$) and back scattering ($160^{\circ}$) than in direction of $90^{\circ}$. 5. The more the distance from phantom to the patient should be less distribution of scattered ray.

  • PDF

Relationship between the Distribution of Space doses in X-ray Rooms and the "Inverse Square Law of Distance" (X선 촬영실 내 공간선량의 분포와 거리 역자승 법칙과의 관련성)

  • Choi, Seong-Kwan
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.8
    • /
    • pp.301-307
    • /
    • 2013
  • In the present study, space doses generated during X-ray radiography of hand, head, and abdomen, etc. were examined and whether the intensity of space doses of scattering rays is attenuated by the "inverse square law of distance" was figured out. First, the space doses of X-ray with small amounts of generated scattering rays such as hand radiography were mostly attenuated by the "inverse square law of distance" and were not detected at all at a distance of 2m. Second, the space doses of X-ray with large amounts of generated scattering rays such as head or abdomen radiography attenuated in higher rates than the rates under the "inverse square law of distance" at distances ranging from 30cm to 1m from the center of the irradiation field and were attenuated by the "inverse square law of distance" at distances ranging from 1m to 2m. Therefore, in X-ray rooms, the subject should be at least 2m away from the center of the irradiation field in the case of hand radiography and X-ray exposure prevention actions using protective devices are required in the entire spaces of the X-ray rooms in the case of head or abdomen radiography.

X-Ray Resonant Magnetic Scattering Study of Magnetic Structures and Magnetic Switching Mechanism in Magnetic Multilayers and Nanostructures (엑스선 공명 자기 산란을 이용한 자성 다층박막 및 나노 구조체의 자기 구조와 자기 스위칭 메커니즘의 연구)

  • Lee, Dong-Ryeol
    • Journal of the Korean Magnetics Society
    • /
    • v.20 no.4
    • /
    • pp.160-166
    • /
    • 2010
  • X-ray resonant magnetic scattering (XRMS) allows us to extract magnetic depth profiles in magnetic multilayers and magnetization distribution in magnetic nanostructures in element-specific manner using x-ray reflectivity and diffraction. XRMS is explained with a brief introduction and examples of magnetic structures and magnetic switching mechanism in magnetic multilayers and nanostructures.

Small-Angle X-ray Scattering Station 4C2 BL of Pohang Accelerator Laboratory for Advance in Korean Polymer Science

  • Yoon, Jin-Hwan;Kim, Kwang-Woo;Kim, Je-Han;Heo, Kyu-Young;Jin, Kyeong-Sik;Jin, Sang-Woo;Shin, Tae-Joo;Lee, Byeong-Du;Rho, Ye-Cheol;Ahn, Byung-Cheol;Ree, Moon-Hor
    • Macromolecular Research
    • /
    • v.16 no.7
    • /
    • pp.575-585
    • /
    • 2008
  • There are two beamlines (BLs), 4C1 and 4C2, at the Pohang Accelerator Laboratory that are dedicated to small angle X-ray scattering (SAXS). The 4C1 BL was constructed in early 2000 and is open to public users, including both domestic and foreign researchers. In 2003, construction of the second SAXS BL, 4C2, was complete and commissioning and user support were started. The 4C2 BL uses the same bending magnet as its light source as the 4C1 BL. The 4C1 BL uses a synthetic double multilayer monochromator, whereas the 4C2 BL uses a Si(111) double crystal monochromator for both small angle and wide angle X-ray scattering. In the 4C2 BL, the collimating mirror is positioned behind the monochromator in order to enhance the beam flux and energy resolution. A toroidal focusing mirror is positioned in front of the monochromator to increase the beam flux and eliminate higher harmonics. The 4C2 BL also contains a digital cooled charge coupled detector, which has a wide dynamic range and good sensitivity to weak scattering, thereby making it suitable for a range of SAXS and wide angle X-ray scattering experiments. The general performance of the 4C2 BL was initially tested using standard samples and further confirmed by the experience of users during three years of operation. In addition, several grazing incidence X-ray scattering measurements were carried out at the 4C2 BL.

Relative quantitative evaluation of mechanical damage layer by X-ray diffuse scattering in silicon wafer surface (실리콘 웨이퍼 표면에서 X-선 산만산란에 의한 기계적 손상층의 상대 정량 평가)

  • 최치영;조상희
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.4
    • /
    • pp.581-586
    • /
    • 1998
  • We investigated the effect of mechanical back side damage in Czochralski grown silicon wafer. The intensity of mechanical damage was evaluated by minority carrier recombination lifetime by laser excitation/microwave reflection photoconductivity decay method, degree of X-ray diffuse scattering, X-ray section topography, and wet oxidation/preferential etching methods. The data indicate that the higher the mechanical damage intensity, the lower the minority carrier lifetime, and the magnitude of diffuse scattering and X-ray excess intensity increased proportionally, and it was at Grade 1:Grade 2:Grade 3=1:7:18.4 that the normalized relative quantization ratio of excess intensity in damaged wafer was calculated, which are normalized to the excess intensity from sample Grade 1.

  • PDF

Structure Analysis of Liquid Crystal Emulsions Using X-ray Scattering Analysis (X선 산란분석법을 이용한 액정에멀젼 구조분석)

  • Park, So Hyun;Kim, Su Ji;Noh, Min Joo;Lee, Jun Bae;Park, Soo Nam
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.42 no.3
    • /
    • pp.297-302
    • /
    • 2016
  • In this study, we prepared liquid crystal emulsions composed of $C_{12-20}$ alkyl glucoside, $C_{14-22}$ alcohol, and behenyl alcohol and performed structure analysis using various analytical equipment. First, as an important characteristic of liquid crystal emulsions, maltese cross patterns and multi-layer structure were observed by a polarized microscope and cryo-SEM. Also, formation of liquid crystal phase was confirmed by DSC and multi-layer lamellar structure having an interlayer spacing approximately $305{\AA}$ was confirmed by small angle x-ray scattering (SAXS). The alkyl chain arrangement formed orthorhombic structure of a lamellar structure of the liquid crystal emulsion was confirmed by wide angle x-ray scattering (WAXS). These results suggest that information on the various physical properties obtained through the research of liquid crystal emulsion structure is expected to be widely used in cosmetics development in the future.