• Title/Summary/Keyword: X-ray Fractography

Search Result 15, Processing Time 0.018 seconds

A Study on the Effect of Inclusions on the Fatigue Life of Titanium Investment Castings (티타늄 정밀주조품의 피로수명에 미치는 개재물의 영향에 관한 연구)

  • Park, Yong-Kuk;Ret, P.L.;Kim, Jin-Gon
    • Journal of Korea Foundry Society
    • /
    • v.26 no.2
    • /
    • pp.85-91
    • /
    • 2006
  • Inclusions in Ti investment castings are generally known to have detrimental effects on the performance of the castings. However, actual inclusions are infrequent and hard to be located. As a result, it is extremely difficult to obtain sufficient amount of fatigue test specimens of titanium investment castings having inclusions in the gage section. Thus, in-depth research of the adverse influence of inclusions is also hindered. To address this problem, a new casting methodology of specimens containing hard alpha inclusions was developed in this study. To guarantee successful introduction of an inclusion and casting, a carefully designed mold with 8 legs and a special tool were employed. After solidification, castings were cut, and X-ray radiography determined that the inclusions were successfully incorporated into the castings. The castings were further prepared to obtain multiple test specimens and they were fatigue-tested consecutively. Fractography analysis confirmed that fatigue cracks initiated at the hard alpha inclusion. In a nonlinear regression model, the fatigue life can be modeled as an exponential function with a negative exponent of the cross-sectional area of an inclusion. The fatigue life of Ti specimens containing inclusions is inversely proportional to the cross-sectional area of an inclusion.

A Study on the Evaluation Technique of Damage of Metal Matrix Composite Using X-Ray Fractography Method (X선 프렉토그래피기법을 이용한 금속복합재료의 피로손상 해석에 관한 연구)

  • Park, Young-Chul;Yun, Doo-Pyo;Park, Dong-Sung;Kim, Deug-Jin;Kim, Kwang-Young
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.18 no.3
    • /
    • pp.172-180
    • /
    • 1998
  • It is attempted to verify the Quantitative relationship between fracture mechanical parameters (${\Delta}K$, $K_{max}$) and X-ray parameters (residual stress, half-value breadth) of A12009-15v/o $SiC_w$ composite, and normalized SS41 steel. In this study, fatigue crack propagation test were carried out and X-ray diffraction was applied to fatigue fractured surface in order to investigate the change of residual stress and half-value breadth on fatigue fractured surface. And it is loaded prestrain to each tensile specimen, A12009-15v/o $SiC_w$ composite(0.3, 0.5, 1, 1.5, 2%) and normalized SS41 steel(0.63, 2.25, 7.50, 13.7, 20%), for investigating plastic strain rate using nondestructive measurement method. X-ray diffraction was applied to the prestrained tensile specimens in order to measure the change of residual stress and half-value breadth.

  • PDF

Prediction of Failure Stress of Rocker Arm Shaft using FEM and Striation (FEM과 Striation을 이용한 로커 암 축의 파손응력 추정)

  • Lee, Soo-Jin;Lee, Dong-Woo;Hong, Soon-Hyeok;Cho, Seok-Swoo;Joo, Won-Sik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.3 s.192
    • /
    • pp.84-90
    • /
    • 2007
  • As a result of vehicle maintenance of rocker arm shaft for 4-cylinder SOHC engine, failure stress analysis of rocker arm shaft is needed. Because more than 30% of vehicles investigated have been fractured. Failure stress analysis is classified into an naked eyes, microscope, striation and X-ray fractography etc. Failure stress analysis by using striation is already established technology as means for seeking cause of fracture. But, although it is well known that striation spacing corresponds to the crack growth rate da/dN, it is not possible to determine ${\sigma}_{max}\;and\;{\sigma}_{min}$ under service loading only from striation spacing. This is because the value of striation spacing is influenced not only by ${\Delta}K$ but also by the stress ratio R. In the present paper, we determine the stress ratio using orthogonal array and ANOVA, and propose a prediction method of failure stress which is combined with FEM and striation.

Fracture Toughness Improvement of Graphite/Epoxy Composite by Intermittent Interlaminar Bonding (간헐적인 층간접착 을 이용한 Graphite/Epoxy 복합재료 의 파괴인성 개선)

  • 임승규;홍창선
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.8 no.5
    • /
    • pp.425-434
    • /
    • 1984
  • The concept of intermittent interlaminar bonding is investigated as a means of improving the fracture toughness of cross-ply Gr/Ep composites without significant loss of tensile strength and modulus. The concept of linear elastic fracture mechanics(LEFM)is used to study the effects of strong bonded area and bonding composites. The experimental results indicate that the fracture toughness and notch strength of intermittent interlaminar bonded composities are improved and the tensile strength only decreased by 3-8% in comparison to those of the fully bonded composites. Damage zones around the crack tip are detected by the modified X-Ray non-destructive testing technique and the fractography. The improvement of toughness is explained based on the damage zones. The mechanisms of damage zone are shown to be caused by subcrack along the fiber on the 0.deg. ply, matrix cracking along the fiber on the 90.deg. ply, interlaminar delamination, and ply pull-out of the 0.deg. ply.

Effect of T6 heat treatment on the microstructure and mechanical properties of AA365 alloy fabricated by vacuum-assisted high pressure die casting (고진공 고압 다이캐스팅으로 제조된 AA365 합금의 미세조직과 기계적 특성에 미치는 T6 열처리의 영향)

  • Junhyub Jeon;Seung Bae Son;Seok-Jae Lee;Jae-Gil Jung
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.37 no.3
    • /
    • pp.121-127
    • /
    • 2024
  • We investigate the effect of T6 heat treatment on the microstructure and mechanical properties of AA365 (Al-10.3Si-0.37Mg-0.6Mn-0.11Fe, wt.%) alloy fabricated by vacuum-assisted high pressure die casting by means of thermodynamic calculation, X-ray diffraction, scanning and transmission electron microscopy, and tensile tests. The as-cast alloy consists of primary Al (with dendrite arm spacing of 10~15 ㎛), needle-like eutectic Si, and blocky α-AlFeMnSi phases. The solution treatment at 490 ℃ induces the spheroidization of eutectic Si and increase in the fraction of eutectic Si and α-AlFeMnSi phases. While as-cast alloy does not contain nano-sized precipitates, the T6-treated alloy contains fine β' and β' precipitates less than 20 nm that formed during aging at 190℃. T6 heat treatment improves the yield strength from 165 to 186 MPa due to the strengthening effect of β' and β' precipitates. However, the β' and β' precipitates reduce the strain hardening rate and accelerate the necking phenomenon, degrading the tensile strength (from 290 to 244 MPa) and fracture elongation (from 6.6 to 5.0%). Fractography reveals that the coarse α-AlFeMnSi and eutectic Si phases act as crack sites in both the as-cast and T6 treated alloys.