• Title/Summary/Keyword: X-ray Fractography

Search Result 15, Processing Time 0.035 seconds

A Study on the X-Ray Fractography of Turbine Blade under Fatigue Load (피로하중을 받는 터빈 블레이드의 X선의 프랙토그래피에 관한 연구)

  • 김성웅;이동우;홍순혁;조석수;주원식
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.778-783
    • /
    • 2001
  • Turbine blade is subject to cyclic bending force by steam pressure. Stress analysis by fractography is already established technology as means for seeking cause of fracture and has been widely employed. In the X-ray fractography, plastic deformation and residual stress near the fracture surface can by determined and information of internal structure of material can be obtained. Therefore, to find a fracture mechanism of torsion-mounted blade in nuclear power plant, based on the information from the fracture surface obtained by fatigue test, the correlation of X-ray parameter and fracture mechanics parameter was determined and then the load applied to actual broken turbine blade was predicted.

  • PDF

A Study on the X-Ray Fractography of Turbine Blade under Fatigue Load (피로하중을 받는 터빈 블레이드의 X선 프랙토그래픽에 관한 연구)

  • Hong, Soon-Hyeok;Lee, Dong-Woo;Cho, Seok-Swoo;Joo, Won-Sik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.2
    • /
    • pp.65-71
    • /
    • 2002
  • Turbine blade is subject to cyclic bending force by steam pressure. Stress analysis by fractography is already established technology as means far seeking cause of fracture and has been widely employed. In the X-ray frctography, plastic deformation and residual stress near the fracture surface can be determined and information of internal structure of material can be obtained. Therefore, to find a fracture mechanism of torsion-mounted blade in nuclear power plant, based on the information from the fracture surface obtained by fatigue test, the correlation of X-ray parameter and fracture mechanics parameter was determined and then the stress intensity factor to actual broken turbine blade was predicted.

A Study on the Measurement of Plastic Zone Depth using TRIZ (창의적 문제해결 이론을 이용한 소성역깊이 측정에 관한 연구)

  • Lee, Dong-Woo;Joo, Won-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.1
    • /
    • pp.62-66
    • /
    • 2008
  • Machine parts subjected to fluctuating or cyclic loads induce repeated stresses that often result in failure by fatigue. In such cases, the fatigue failures unfortunately sometimes occur. These may arise from a lack of knowledge with regard to the design, fabrication and operation of the machines or structures. The failure analysis provides valuable information regarding the prevention of similar failures. Furthermore, this information will be useful to improve or to develop new products. Failure stress analysis is classified into X-ray fractography. X-ray fractography has the limited applications because of material crystal size, difficult measurement method, electrolytic polishing precision, and long test time. Therefore, this study proposed the new method to improve the measurement precision of plastic zone depth and test time using TRIZ.

  • PDF

The Study on the Quantitative Analysis of Accident Fracture Surface by X-ray Diffraction (X-ray 회절에 의한 사고파면의 정량적 해석에 관한 연구)

  • Choi, Seong-Dae;Kweon, Hyun-Kyu;Cheong, Seon-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.4
    • /
    • pp.117-123
    • /
    • 2002
  • X-ray diffraction observation of fracture surfaces yields useful information to analyze the causes of failure accidents of engineering structures. This experimental technique, named X-ray fractography, has been developed especially in metal and mechanical engineering fields. The distributions of the residual stress and the half value breadth of diffraction profiles beneath the fatigue fracture surface were measured with SNCM 439, HT100 and Ti-6Al-4V alloy. The size of the maximum plastic zone was successfully determined on the basis of the measured distributions. This size was correlated to maximum stress intensity factor. The distributions of the half value breadth of diffraction profiles on the fatigue fracture surfaces were measured with SNCM 439. HT100. The equations of x-ray parameter distribution were possible to estimated fracture parameters of fatigue fracture surfaces.

A Study on the Failure Mechanism of Turbine Blade using X-Ray Diffraction and FEM (X선 회절과 유한요소법을 이용한 터빈 블레이드의 파괴기구에 관한 연구)

  • Kim, Seong-Ung;Hong, Sun-Hyeok;Jeon, Hyeong-Yong;Jo, Seok-Su;Ju, Won-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.8
    • /
    • pp.1645-1652
    • /
    • 2002
  • The failure analysis on fractured parts is divided into the qualitative method by naked eyes and metallurgical microscope etc. and the quantitative method by SEM and X-ray diffraction etc. X-ray fractography can be applied to contaminated surface as well as clean surface and gain the plastic deformation and the residual stress near the fractured surface. Turbine blade is subject to cyclic bending force by steam pressure and suffers fatigue damage according to the increasing operating time. Therefore, to clean up the fracture mechanism of torsion-mounted blade in nuclear plant, the fatigue and the X-ray diffraction test was performed on the 12%Cr steel fur turbine blade and the fractured parts. The correlation of X-ray parameter and fracture mechanics parameter was determined, and then the load applied to actual broken turbine blade was predicted. Failure analysis was performed by contact stress analysis and Goodman diagram of torsion-mounted blade.

Analysis on the Fatigue Fracture Surface of Gas Piping Material using the X-Ray Fractography (X-선 프랙토그라피에 의한 가스배관재의 피로파면해석)

  • Lim, Man-Bae
    • Journal of the Korean Society of Safety
    • /
    • v.17 no.1
    • /
    • pp.18-24
    • /
    • 2002
  • This study verified the relationship between fracture mechanics parameters(${\Delta}K,\;K_{max}$) and X-ray parameters ($(\sigma}_r,;B$) for G365 steel at elevated temperature up to $300{\circ}C$. The fatigue crack propagation test were carried out and X-ray diffraction technique according to crack length direction was applied to fatigue fractured surface. The residual stress on the fracture surface was found to increase in low ${\Delta}K$ region, reach to a maximum value at a certain value of $K_{max}$ or ${\Delta}K$ and then decrease. Residual stress was independent on stress ratio by arrangement of ${\Delta}K$ and half value breadth was independent by the arrangement of $K_{max}$. The equation of ${\sigma}_r-{\Delta}K$ was established by the experimental data. Therefore, fracture mechanics parameters could be estimated by the measurement of X-ray parameters.

Failure Analysis in Al 7075-T651 Alloy using X-ray Diffraction Technique (X-선 회절을 이용한 A1 7075-T651합금의 파손해소)

  • 오세욱;박수영;부명환
    • Journal of Ocean Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.103-113
    • /
    • 1993
  • X-ray diffraction analysis technique was used for the fatigue damage analysis and fatigue life prediction in Al 7075-T651 alloy. The tensile test, fatigue strength and fatigue crack propagation test with change of stress ratio were carried out. As a result, half-value breadth was increased with the plastic deformation in the specimen increasint at all test conditions. In particular, half-value breadth at the surface of the specimens fractured by fatigue was increased as stress intensity factor range and effective stress intensity factor range were increased. In addition, the good relationship between half-value breadty and diffraction pattern was shown.

  • PDF

X-ray diffraction study on fatigue fractured surface of SS41 Steel (X-선 회절에 의한 SS41강의 피로파면해석)

  • 오세욱;박수영;김기환;김태형
    • Journal of Ocean Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.114-122
    • /
    • 1994
  • X-ray stress constant, K, was determined for the diffraction line of (211)plane by using Cr-K$\alpha$ radiation. K was -340.87 MPa/deg. Fatigue crack propagation tests of SS41 steel were conducted under stress ratios of 0.1, 0.3 and 0.5. The half-value breadth of X-ray diffraction profile was measured at and beneath the fracture surface. The half-value breadth, B, on the fracture surface was found to increase with increasing $K_max$. The value of B was influenced by stress ratio in SS41 steel. The half-value breadth took the maximum value at the borden of reversed plastic zone, while it approached to the initial (pre-fatigue) value near the boundary of monotonic plastic zone. The maximum depth of the plasticzone was evaluated on the basis of the half-value breadth distribution. The depth $\omega$$_y$ is related to $K_max$by the following equation : $\omega$$_y$ = $\alpha$($K_max$/$\sigma$$_y$$)^2$ where .sigma.$\sigma$$_y$ is the yield strength obtength obtained in tension test .alpha.is 0.136 for SS41 steel.

  • PDF

A Study on the Failure Mechanism of Turbine Blade using X-Ray Diffraction and FEM (X선 회절과 유한요소법을 이용한 터빈 블레이드의 파괴기구에 관한 연구)

  • Kim, Sung-Woong;Hong, Soon-Hyeok;Jeon, Hyoung-Yong;Cho, Seok-Swoo;Joo, Won-Sik
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.258-265
    • /
    • 2001
  • Turbine blade is subject to force of three type ; torsional force by torsion-mount, centrifugal force by rotation of rotor and cyclic bending force by steam pressure. Cyclic bending force of them is main factor on fatigue fracture. In the X-ray diffraction method, the change in the values related to plastic deformation and residual stress near the fracture surface mat be determined, and information of internal structure of material can be obtained. Therefore, to find a fracture mechanism of torsion-mounted blade in nuclear plant, based on the information from the fracture surface obtained by fatigue test, the correlation of X-ray parameter and fracture mechanics parameter was determined, and then the load applied to actual broken turbine blade parts was predicted. Failure analysis is performed by finite element method and Goodman diagram on torsion-mounted blade.

  • PDF

An Estimation on Failure Boundary Condition of Rocker Arm Shaft for 4-Cylinder SOHC Engine Using Orthogonal Array (직교배열표를 이용한 4기통 SOHC 엔진용 로커암 축의 파손경계조건 평가에 관한 연구)

  • Lee, Soo-Jin;Lee, Dong-Woo;Hong, Soon-Hyeok;Cho, Seok-Swoo;Joo, Won-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.9 s.240
    • /
    • pp.1161-1168
    • /
    • 2005
  • As a result of vehicle maintenance of rocker arm shaft for 4-cylinder SOHC engine, failure analysis of rocker arm shaft is needed. Because more than $30\%$ of vehicles investigated have been fractured. Failure analysis is classified into an naked eyes, microscope and X-ray fractography etc. It can predict applied load as well as load type. These methods are applicable to components with simple boundary condition but aren't applicable to components with complex boundary condition. The existing fractography don't catch hold of failure boundary condition quantitatively. Especially, in case that the components isn't fractured at same position. We must determine the most dangerous failure boundary condition to evaluate their operation mechanism. The effect of various factors on response should be estimated to solve this statical problem. This study presents the most dangerous failure boundary condition of rocker arm shaft using orthogonal array and ANOVA in order to assure its robustness.