• Title/Summary/Keyword: X-ray Crystallography

Search Result 316, Processing Time 0.026 seconds

Crystal Structures and Characterization of Copper(II) Complexes of N,N,N'N'-Tetrakis(2-pyridylmethyl)-1,2-ethanediamine

  • Yoon, Doo-Cheon;Lee, Uk;Oh, Chang-Eon
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.6
    • /
    • pp.796-800
    • /
    • 2004
  • The structure of [Cu(tpen)]$(ClO_4)_2$ (tpen = N,N,N',N'-tetrakis(2-pyridylmethyl)-1,2-ethanediamine) has been identified by X-ray crystallography. The copper(II) ion is surrounded by two amine N atoms and three pyridine N atoms of the ligand, making a distorted trigonal-bipyramid. Among the six potential N donor atoms (two amine N and four pyridine N atoms), only one pyridine N atom remains uncoordinated. We examined structural changes on addition of $Cl^-$ to $[Cu(tpen)]^{2+}$(1). The addition of $Cl^-$ in methanol resulted in the formation of a novel dinuclear copper(II) complex $[Cu_2Cl_2(tpen)](ClO_4)_2{\cdot}H_2O$. The structure of the dinuclear complex was verified by X-ray crystallography. Each copper(II) ion in the dinuclear complex showed a distorted square planar geometry with two pyridine N atoms, one amine N atom and one $Cl^-$ ion.

Preparation and Structure of $Re(≡NC_6H_5)(DPPE)CI_3$, $[DPPE=Ph_2PCH_2CH_2PPh_2]$ ($Re(≡NC_6H_5)(DPPE)CI_3$화합물의 합성 및 구조)

  • 박병규;정건수
    • Korean Journal of Crystallography
    • /
    • v.6 no.2
    • /
    • pp.93-97
    • /
    • 1995
  • Re(≡NC6H5)(PPh3)2CI3, I, reacted with, 1,2-bis(diphenylphosphino)ethane (DPPE) to give fac-Re(≡NC6H5)(DPPE)CI3, II. The product has been characterized by 1H-NMR, elemental analysis, and X-ray crystallography. II Crystalizes in the monoclinic space group Pc, with cell parameters a=11.083(3)Å, b=10.930(1)Å, c=14.081(2)Å, β=108.37(2)°, Z=2. Least-squares refinement of the structure led to a R(wR2)factor of 0.0254(0.0607) for 2888 unique reflections of I>2σ(I) and for 352 variables.

  • PDF

Dissolution of Glibenclamide Polymorphs (글리벤클라미드 결정다형의 용출)

  • Sohn, Young-Taek;Um, Bo-Young
    • Journal of Pharmaceutical Investigation
    • /
    • v.27 no.3
    • /
    • pp.233-239
    • /
    • 1997
  • Glibenclamide is a second generation sulfonylurea that is orally active as a hypoglycemic drug. It exists as a crystalline powder which is sparingly soluble in water. It was investigated that the potential of glibenclamide to exhibit polymorphism. Three polymorphic modifications (form 1, form 2 and form 3) and three pseudopolymorphic modifications (form 4, form 5 and form 6) were obtained by crystallization from different organic solvents. The isolated crystal forms were characterized by differential scanning calorimetry(DSC), thermogravimetric analysis(TGA) and X-ray crystallography powder diffraction studies. Form 1 was the most stable and melt at $175.4^{\circ}C$. Form 2 was metastable and melt at $151.0^{\circ}C$. Form 3 was a new polymorphic modification because it was different from form 1 and form 2 in X-ray crystallography powder diffraction data. Form 4 was a 1 : 7(toluene : glibenclamide) toluene solvate; form 5 was a 1 : 5(toluene : glibenclamide) toluene solvate; form 6 was a 3 : 8(pentanol : glibenclamide) pentanol solvate. All forms were stable in 3-month storage under 0% or 100% humidity condition. The dissolution rate of form 4 was highest; those of form 2, form 3, form 1, form 5 and form 6 followed.

  • PDF

3D Printing-Based Ultrafast Mixing and Injecting Systems for Time-Resolved Serial Femtosecond Crystallography (시간 분해 직렬 펨토초 결정학을 위한 3차원 프린팅 기반의 초고속 믹싱 및 인젝팅 시스템)

  • Ji, Inseo;Kang, Jeon-Woong;Kim, Taeyung;Kang, Min Seo;Kwon, Sun Beom;Hong, Jiwoo
    • Korean Chemical Engineering Research
    • /
    • v.60 no.2
    • /
    • pp.300-307
    • /
    • 2022
  • Time-resolved serial femtosecond crystallography (TR-SFX) is a powerful technique for determining temporal variations in the structural properties of biomacromolecules on ultra-short time scales without causing structure damage by employing femtosecond X-ray laser pulses generated by an X-ray free electron laser (XFEL). The mixing rate of reactants and biomolecule samples, as well as the hit rate between crystal samples and x-ray pulses, are critical factors determining TR-SFX performance, such as accurate image acquisition and efficient sample consumption. We here develop two distinct sample delivery systems that enable ultra-fast mixing and on-demand droplet injecting via pneumatic application with a square pulse signal. The first strategy relies on inertial mixing, which is caused by the high-speed collision and subsequent coalescence of droplets ejected through a double nozzle, while the second relies on on-demand pneumatic jetting embedded with a 3D-printed micromixer. First, the colliding behaviors of the droplets ejected through the double nozzle, as well as the inertial mixing within the coalesced droplets, are investigated experimentally and numerically. The mixing performance of the pneumatic jetting system with an integrated micromixer is then evaluated by using similar approaches. The sample delivery system devised in this work is very valuable for three-dimensional biomolecular structure analysis, which is critical for elucidating the mechanisms by which certain proteins cause disease, as well as searching for antibody drugs and new drug candidates.

HVEM Application to Electron Crystallography: Structure Refinement of $SmZn_{0.67}Sb_2$

  • Kim, Jin-Gyu;Kim, Young-Min;Kim, Ji-Soo;Kim, Youn-Joong
    • Applied Microscopy
    • /
    • v.36 no.spc1
    • /
    • pp.1-7
    • /
    • 2006
  • The three-dimensional structure of an inorganic crystal, $SmZn_{0.67}Sb_2$ (space group $P4/nmm,\;a=4.30(3){\AA}\;and\;c= 10.27(1){\AA}$), was refined by electron crystallography utilizing high voltage electron microscopy (HVEM). Effects of instrumental resolution, image quality, beam damage and specimen tilting on the structure refinement have been evaluated. The instrumental resolution and image quality were the most important factors on the final results in the structure refinement, while the beam damage and specimen tilting effects could be experimentally minimized or controlled. The average phase errors $({\Phi}_{res})$ for the [001], [100] and [110] HVEM images of $SmZn_{0.67}Sb_2$ were $10.1^{\circ},\;9.6^{\circ}\;and\;6.8^{\circ}$, respectively. The atomic coordinates of $SmZn_{0.67}Sb_2$ were consistent within $0.0013{\AA}{\sim}0.0088{\AA}$, compared to the X-ray crystallography data for the same sample.

Self-assembly Coordination Compounds of Cu(II), Zn(II) and Ag(I) with btp Ligands (btp = 2,6-bis(N'-1,2,4-triazolyl)pyridine):Counteranion Effects

  • Kim, Cheal;Kim, Sung-Jin;Kim, Young-Mee
    • Korean Journal of Crystallography
    • /
    • v.16 no.2
    • /
    • pp.107-127
    • /
    • 2005
  • Five Cu(II) compounds were obtained from different copper salts with btp ligands, and their structures were determined by X-ray crystallography. The structure of coordination polymer 2 contains btp-bridged tetranuclear Cu(II) units weakly connected by nitrate ions, and the structure of a discrete Cu(II) molecule 1 contains acetates and btp ligands. With perchlorate anions, two btp ligands bridge Cu(II) ions to form a double zigzag chain 3, while a single zigzag chain 4 is created with sulfate anions. The reaction of $Cu(NO_{3})_{2}$ containing $NH_{4}PF_{6}$ with btp ligands also produced a polymeric compound 5 containing $Cu(H_{2}O)_{2}^{2+}$ and $Cu(NO_{3})_{2}$ units alternatively bridged by btp ligands with H-bonds between copper bonded water and nitrate oxygen atoms. Five Zn(II) compounds were obtained from different zinc salts with btp ligands, and the structures of polymeric compounds (6, 7 and 8) and monomeric compounds (9 and 10) were determined by X-ray crystallography. With nitrate, chloride and bromide anions, btp ligands bridge Zn(II) ions to form polymeric compounds (6, 7 and 8), but btp ligands coordinate to a Zn(II) ion to form monomeric complexes (9 and 10) with $PF_{6}^{-}$ and perchlorate anions. Four silver salts and btp ligands produced two kinds of structures, dinuclear 20-membered rings and one-dimensional zigzag chain depending on different anions. For $ClO_{4}^{-}$ and OTf anions, weak interactions between Ag(I) and anions make dinuclear 20-membered rings construct polymeric compounds (11 and 13). For $PF_{6}^{-}$ anion, there are also weak interactions between Ag(I) and $F(PF_{6}^{-})(12)$, but they do not construct a polymeric compound. For $O_{2}CCF_{3}^{-}$ anion, btp ligands bridge Ag(I) atoms to make one-dimensional zigzag chain (14), and there are also interactions between Ag(I) and anions.

X-Ray and NMR Studies of Vanadium(V)-Nitrilotriacetate Complex (바나듐(V)-니크릴로트리아세테이트 착물의 X-선 및 핵자기공명 연구)

  • Lee, Man-Ho;Jeong, Woo-Won
    • Analytical Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.196-202
    • /
    • 1997
  • New vanadium(V) complex, $(NH_4)_2[VO_2NTA]$, has been synthesized and its structure has been determined by solution and solid-state NMR spectroscopies as well as X-ray crystallography. The unit cell of the monoclinic crystals contains four complexes with $a=6.923(1){\AA}$, $b=8.824(2){\AA}$, $c=19.218(11){\AA}$ and ${\beta}=91.60(3)^{\circ}$ in the space group of $P2_1/n$. The $[VO_2NTA]^{2-}$ anion has distorted octahedral geometry with cis-$VO_2$ moiety. It is confirmed that the octahedral geometry is retained in both of solution and solid-state complexes.

  • PDF

The Crystal Structure of Licarin-B $(C_{20}H_{20}O_4)$, A Component of the Seeds of Myristica fragrans

  • Kim, Yang-Bae;Park, Il-Yeong;Shin, Kuk-Hyun
    • Archives of Pharmacal Research
    • /
    • v.14 no.1
    • /
    • pp.1-6
    • /
    • 1991
  • The crystal structure of licarin-B, a component of Myristicae Semen was determined by single crystal X-ray diffraction analysis. Crystal of the compound, which was recrystallized from the mixture of hexane and ether, is monoclinic with a=12.740(1), b=7.219(1), c=9.284(1) ${\AA}$, ${\beta}=94.75(1)^{\circ}$, $D_x=1.26$, $D_m=1.27\;g/cm^3$, space group P21, and Z=2. The structure was solved by direct method and refined by least-squares procedure to the final R value of 0.040 for 1532 independent reflections ${F{\ge}3{\sigma}(F)}$. The compound is a dimeric phenylpropanoid, and belongs to the neolignan analogues. The molecules are arranged along with the screw axis. The intermolecular contacts appear to be the normal van der Waals' forces.

  • PDF

Crystallographic study of in-plane aligned hybrid perovskite thin film

  • Lee, Rin;Kim, Se-Jun;Seong, Myeong-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.163.1-163.1
    • /
    • 2016
  • Lead halide perovskites CH3NH3PbX3 (X=Cl, Br, I) have received great interest in the past few years because of their excellent photoelectronic properties as well as their low-cost solution process. Their theoretical efficiency limit of the solar cell devices was predicted around 31% by a detailed balance model for the reason that exceptional light-harvesting and superior carrier transport properties. Additionally, these excellent properties contribute to the applications of optoelectronic devices such as LASERs, LEDs, and photodetectors. Since these devices are mainly using perovskite thin film, one of the most important factor to decide the efficiency of these applications is the quality of the film. Even though, optoelectrical devices are composed of polycrystalline thin film in general, not a single crystalline form which has longer carrier diffusion length and lower trap density. For these reasons, monodomain perovskite thin films have potential to elicit an optimized device efficiency. In this study, we analyzed the crystallography of the in-plane aligned perovskite thin film by X-ray diffraction (XRD) and selected area electron diffraction (SAED). Also the basic optic properties of perovskites were checked using scanning electron microscopy (SEM) and UV-Vis spectrum. From this work, the perovskite which is aligned in all directions both of out-of-plane and in-plane was fabricated and analyzed.

  • PDF