• 제목/요약/키워드: X-band Marine Radar

검색결과 34건 처리시간 0.026초

X밴드 FMCW 레이더용 광대역 저항성 주파수 혼합기 구현 (Implement of Broadband Resistive Mixer for X-band FMCW Radar)

  • 박동국;한태경
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제31권8호
    • /
    • pp.970-974
    • /
    • 2007
  • A mixer is a key component in the wireless communication systems. In this paper, we design a mixer which is used in a frequency modulated continuous wave(FMCW) radar system. The frequency sweep range of the radar is from 10 GHz to 11 GHz. The transmitted and received signals of the FMCW radar are applied to LO and RF ports of the mixer, respectively, but the frequency difference between the two signals, which is called "a beat frequency" is under a few KHz and depending on the distance to target. Thus the isolation between the LO and RF ports is very important factor to design this mixer. In this paper we propose a single balanced resistive mixer using GaAs MESFET for this application. We first design a single-ended type resistive mixer using a simulation tool, then design a balanced type to increase the LO-to-RF isolation of the mixer. We fabricated the mixer on the substrate of dielectric constant 10 and thickness 0.635 mm. The measured results show that the isolation and conversion loss of the mixer over the frequency band is 20dB and 10.5dB, respectively. The LO input power for operating the proposed mixer is +3dBm, which is lower than a general conventional mixer's LO power. The 1 dB compression point is 6dBm.

레이더 송수신기용 X 밴드 주파수 합성기에 관한 연구 (A Study on X-band Frequency Synthesizer for Radar Transceiver)

  • 박동국;이현수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제30권3호
    • /
    • pp.444-448
    • /
    • 2006
  • In this paper, a frequency synthesizer for X-band FMCW radars is proposed. Some X-band FMCW radars have been used as a level sensor for tanker ship and the resolution of the level sensor may be mainly depend on linearity of frequency sweep. For a linear frequency sweep. the proposed synthesizer employs a phase-locked loop using prescalars and a high speed digital PLL chip. The measured results show that the linear frequency sweep range is from 10 GHz to 11 GHz and the output power of the synthesizer is minium 7 dBm. and the phase noise is about -80 dBc/Hz at 100 KHz offset from 11 GHz.

The Application of Marine X-band Radar to Measure Wave Condition during Sea Trial

  • Park, Gun-Il;Choi, Jae-Woong;Kang, Yun-Tae;Ha, Mun-Keun;Jang, Hyun-Sook;Park, Jun-Soo;Park, Seung-Geun;Kwon, Sun-Hong
    • Journal of Ship and Ocean Technology
    • /
    • 제10권4호
    • /
    • pp.34-48
    • /
    • 2006
  • The visual observation of wave condition depends on the observer's skill and experience. Also, the environmental conditions such as light and cloud heavily influence the visual measurement. In the speed test of sea trial, the wave measurement should be objective and accurate. In this paper, the problems of visual measurement and their effects on speed test are described. To overcome those problems, we developed the wave measurement system using commercial marine X-band radar, WaveFinder. The system installed at inland base was calibrated by waverider buoy and then the system's operability was defined. Onboard tests had also been performed three times for formal wave measurement to correct the ship speed. The results illustrated very good agreement with visual observation by experts. It can be concluded that the system would be useful to measure wave and swell information for the sea trial, irrespective of day and night.

주파수 가변형 헤어핀공진기를 이용한 동작감지용 도플러 레이더센서의 제작 및 설계 (Design and Fabrication of A Doppler Radar for Motion Detector Using Frequency Tunable Hairpin Resonator)

  • 김은수;김규철
    • 한국전자통신학회논문지
    • /
    • 제13권5호
    • /
    • pp.931-936
    • /
    • 2018
  • 주파수 가변형 헤어핀공진기를 이용하여 동작감지용 x-band 레이더를 설계하였다. 제안한 도플러 레이더센서는 바렉터 다이오드를 이용한 헤어핀 공진기를 발진기에 적용하여 발진주파수를 가변할 수 있으며 송수신 겸용 안테나를 이용해서 하나의 안테나로 신호를 송신하고 수신함으로써 사이즈도 줄일 수 있다. 제작된 도플러 레이더센서는 $30{\times}24mm$로 제작되었고, 측정결과 10.52GHz에서 발진하였으며, 물체의 속도에 따라 펄스폭의 차이가 발생하는 것을 확인하였다. 측정된 결과를 이용하여 동작감지용 레이더로 충분히 활용 가능함을 확인하였다.

선박 레이더 영상신호를 이용한 파랑정보 검출에 관한 연구 (A Study on the Estimation of Ocean Surface Wave Information from Marine Radar Signals)

  • 송재욱;김창제;문성배
    • 한국항해항만학회지
    • /
    • 제27권5호
    • /
    • pp.499-504
    • /
    • 2003
  • 본 연구는 선박용 레이더로부터 디지털 신호처리보드를 통하여 영상신호를 획득하고, 일련의 디지털 신호처리 및 영상신호 분석을 통하여 선박에서 실시간으로 파향 및 파장 등의 파랑정보를 측정하기 위한 기법을 개발하고자 하는 것이다. 본 논문에서는 영상신호 분석영역 을 사용자가 직접 설정하는 기존의 방법을 개선하여 분석영역을 자동으로 설정하는 기법 및 2차원 이산 푸리에 변환을 이용한 파향분석 알고리즘에 대하여 논하였다. 그리고, 컴퓨터 시뮬레이션을 통하여 파향분석 알고리즘의 유효성을 검증하였고, 기초실험으로 다양한 해상환경에서 X밴드 레이더로 획득한 13개의 영상신호에 대하여 파향정보 분석 결과를 예시하였다.

SURFACE DEFORMATION MONITORING USING TERRASAR-X INTERFEROMETRY

  • Kim, Sang-Wan;Wdowinski, Shimon;Dixon, Tim
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2008년도 International Symposium on Remote Sensing
    • /
    • pp.422-425
    • /
    • 2008
  • TerraSAR-X is new radar satellite operated at X-band, multi polarization, and multi beam mode. Compared with C-band or L-band SAR, the X-band system inherently suffers from more temporal decorrelation, but is more sensitive to surface deformation monitoring due to short wavelength (3.1 cm) and high spatial resolution (1m-3m). It is generally expected that sensitivity to estimate surface movement using TerraSAR-X will be increased by the factor of 10, compared to current C-band system with low spatial resolution such as ERS-2, Envisat. Many urban areas are experiencing land subsidence due to water, oil and natural gas withdrawal, underground excavation, sediment compaction, and so on. Monitoring of surface deformation is valuable for effectively limiting damage areas. In addition high accuracy and spatially dense subsidence map can be achieved by X-band InSAR observation, promoting identification and separation of various subsidence processes and leading to enhanced understanding via mechanical modeling. In this study we will introduce some initial InSAR results using new TerraSAR-X SAR data for surface deformation monitoring.

  • PDF

바랙터 다이오드를 이용한 X-밴드 전압제어 발진기 (X-band Voltage Controlled Oscillator using Varactor Diode)

  • 박동국;윤나라;최연지;김예지
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제33권5호
    • /
    • pp.756-761
    • /
    • 2009
  • In this paper, a X band voltage controlled oscillator is proposed. The oscillator uses a transistor as an oscillating element and its oscillating frequencies are controlled by the tuning voltage of varactor diode. Using the circuit simulation tools, the matching circuits between the transistor and varactor diode, its input and output matching circuits, and a feedback circuits are designed. The measured results of the fabricated oscillator show that its oscillation frequencies are from 10.50GHz to 10.88GHz according to the turning voltages of 1V to 18V, its output power levels are about 4.3dBm, and its phase noise is around -43.5dBc/Hz at 100kHz offset frequency of 10.5GHz.

인공신경망을 이용한 X-Band 레이다 유의파고 추정 (Estimation of Significant Wave Heights from X-Band Radar Using Artificial Neural Network)

  • 박재성;안경모;오찬영;장연식
    • 한국해안·해양공학회논문집
    • /
    • 제32권6호
    • /
    • pp.561-568
    • /
    • 2020
  • 항해용 X-band 레이다를 이용한 파랑관측은 기존의 파랑관측 방법인 부이식 파고계, 압력식 파고계, 초음파식 파고계에 비해 많은 이점이 있다. 예를 들면 유실과 파손의 위험이 없고, 유지관리 비용이 적게 들며, 심해부터 천해까지 파랑의 공간적 분포를 알 수 있다. 본 논문에서는 레이다형 파고계의 유의파고 측정 정확도를 높이는 인공신경망을 이용한 알고리즘을 제시하였다. 레이다형 파고계에서 유의파고를 추정하는 전통적인 방법은 신호 대 잡음 비율(${\sqrt{SNR}}$) 또는 신호 대 잡음 비율과 첨두주기(TP)를 이용하는 방법이 있다. 본 연구에서는 신호 대 잡음 비율, 첨두주기 및 레이다 이미지 해상도 비율(Rval > k)을 입력변수로 하는 인공신경망 알고리즘을 이용하여 유의파고 추정의 정확도를 향상시켰다. 개발된 알고리즘을 울진 후정해수욕장에서 초음파식 파고계로 측정한 유의파고의 시계열과 비교하여 정확도 향상을 확인하였다.

레이더 송수신기용 X 밴드 주파수 합성기 개발 (Development of X-band frequency synthesizer for radar transceiver)

  • 이현수;박동국;이수태;김진영
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2005년도 후기학술대회논문집
    • /
    • pp.208-209
    • /
    • 2005
  • A frequency synthesizer of 10 GHz ${\sim}$ 11 GHz for FMCW radar is designed and implemented by the form of indirect frequency synthesizer of a single loop structure. The synthesizer uses a high speed digital PLL chip. It is difficult to divide directly by using a program counter of PLL chip because the output frequency of VCO is 10 GHz ${\sim}$ 11 GHz, so we lower the frequency to 625 MHz ${\sim}$ 687.5 MHz by using a prescaler, and then divide the frequency by the program counter. The output frequency sweep of VCO from 10 GHz to 11 GHz is measured.

  • PDF

효율적인 어업실습선의 선교 layout을 위한 당직항해사의 업무특성 분석 (Analysis characteristics of officers' watch-keeping for efficient navigation bridge layout of a fisheries training vessel)

  • 김민선;황보규
    • 수산해양기술연구
    • /
    • 제52권1호
    • /
    • pp.56-64
    • /
    • 2016
  • This study analyzed characteristics of officers' watch-keeping during fishing operation at the fisheries training ship KAYA (GT: 1,737 tons, Pukyong National University). It observed fishing works of three officers in wheel house of KAYA. The observations were carried out at the fishing ground 45 miles away from east of Jeju from 7 to 8 January 2010. The works and movements of the officers were recorded with three common video cameras and a 4-channel MPEG-4 Triplex DVR. Recorded data of the working circulation was analyzed by using the post-processing method. As a result of the traffic lines, the average (${\pm}S.D$) of working hour (min) and moving frequency (times), distance (m) and speed (m/min) during setting the net was 11.8 (0.9), 43.7 (8.1), 133.9 (35.8) and 10.5 (0.6), respectively. During trawling the net, it was 100, 241 (39.8), 615.7 (194.6) and 5.2 (1.6), respectively. During hauling the net, it was 17.6 (1.4), 41.0 (7.2), 196.9 (37.6) and 10.7 (0.8), respectively. In addition, it has a different tendency of the instrument usage frequency by the fishing works. During setting, the usage priority was CCTV, ECDIS, RPM and pitch controller, net monitor, GPS plotter, chart room, X-band radar, fish finder and public addressor. During trawling, it was CCTV, ECDIS, fish finder, X-band radar, net monitor, chart room, GPS plotter, RPM and pitch controller, auto pilot and steering, interphone, wind speed and direction indicator, No.1. VHF, navigation light control panel and public addressor. During hauling, it was CCTV, RPM and pitch controller, GPS plotter, public addressor, chart room, net monitor, X-band radar, auto pilot and steering and fish finder.