• Title/Summary/Keyword: X-band Antenna

Search Result 193, Processing Time 0.026 seconds

The Design of X-band Cassegrain Antenna for Spill-over Suppression (Spill-over 억제를 위한 X-band 카세그레인 안테나 설계 연구)

  • Lee Woo-Sang;Jang Won;Lee Byoung-Moo;Yang Gi-Joo;Lee Sang-Heun;Yoon Young-Joong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.9 s.112
    • /
    • pp.829-835
    • /
    • 2006
  • In this paper, new structure of the Cassegrain reflector antenna whose spill-over is efficiently reduced by modified reflectors is proposed for high power. It can be achieved by designing the geometry of subreflector in Cassegrain system using two hyperbolic curves in order to be suitable a lager beamwidth of feeding pattern without broadening main reflector. Finally, radiation efficiency and side lobe level of the proposed Cassegrain reflector antenna can be improved respectively 9 %, 10 dB than conventional one.

A STUDY ON THE DESIGN OF THE MICROSTRIP PATCH ANTENNA (마이크로스트립 패치 안테나의 설계에 관한 연구)

  • 육종관;박한규;송우영;박한규
    • Proceedings of the Korean Institute of Communication Sciences Conference
    • /
    • 1988.10a
    • /
    • pp.118-121
    • /
    • 1988
  • Previous antenna design formula produce some errumenous resulitat the high frequency(above x-band.) This is because of the dispersion effect. Surface wave and higher order modes We propose exact design formula which gives errors less then 0.5% at the above x-band Exper imental investigations also prove the exactness of the proposed formual Further investigations should be done to give the relations between surface wave poles higer mides and resonant frequency.

  • PDF

Design and Fabrication of the Dipole-Fed Planar Array Antenna at X-Band (X밴드용 다이폴 급전 평면배열 안테나 설계 및 제작)

  • Mun, Seong-Ik;Yang, Du-Yeong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.39 no.5
    • /
    • pp.251-258
    • /
    • 2002
  • In this paper, the dipole-fed planar array antenna applied Yagi-Uda antenna away theory to microstrip antenna is designed and fabricated at X-band. The design procedure of the dipole-fed planar array antenna with the wide bandwidth is presented to be easily practiced to a wireless communication system. The radiation pattern, return loss and bandwidth of the antenna are improved by the finite differential time domain(FDTD) numerical method. The propriety of analysis of planar dipole antenna is proved from the measured data. From the measured results, the antenna maximum gain is 4.9dBi at center frequency of 10GHz and frequency bandwidth is about 40%. Front-to-back ratio is 16dB, and half-power beam-width of E-plane and H-plane are 117$^{\circ}$and 156$^{\circ}$, respectively. When VSWR of antenna is less than 2, the measured results are agreed well with the theoretical values in the frequency range from 7.4GHz to 11.88GHz.

Design of An X-Band Traveling-Wave Slot Array (X-대역 진행파 슬롯 배열 안테나 설계)

  • 유상길;이석곤;최재현;안병철
    • Proceedings of the IEEK Conference
    • /
    • 2002.06a
    • /
    • pp.455-458
    • /
    • 2002
  • Design methods are presented for an X-band traveling-wave slot array realized on a rectangular waveguide. An array of 21 longitudinal slots is realized on the broad wall of a rectangular waveguide. The squint of the antenna main beam is adjusted using the element spacing and the waveguide broad wall dimension. The excitation of the array is controlled by the slot offset from the waveguide center line Multiple I-plane steps are placed around last slot elements so that the second-order beam due to tile reflected wave Is minimized A waveguide-to-coaxial adapter Is designed for feeding the array antenna from a coaxial system. Results of the design show an outstanding performance of the antenna 17.1 dB gain. 36"beam 1111, and -21 dB maximum sidelobe level.evel.

  • PDF

Analysis of resonant frequency in microstrip antennas using X-cut Quartz plates (X-cut quartz를 이용한 마이크로스트립 안테나의 해석)

  • Kang, Hyun-Il;Hwang, Hyun-Suk;Lee, Kyu-Il;Lee, Tae-Yong;Song, Joon-Tae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.380-381
    • /
    • 2006
  • A technique to control the operating frequency of microstrip antenna by using the X-cut quartz substrate has been investigated experimentally and theoretically. We consider 6, 8 and 10 GHz resonance frequency in three dimensional quartz plates. Equation of linear piezoelectricity are solved for the thickness-shear approximation of X-cut quartz plates. At X-band frequencies, the microstrip antenna was voltage-controllable using the dc electric field dependence of the piezoelectric constant of X-cut quartz. This work demonstrates advantageous application for X-cut quartz plate in microstrip antenna substrates.

  • PDF

X-Band Phased Array Antenna Module for the Beam Compensation of an Aircraft Wing Mounted Antenna (항공기 날개 탑재 안테나의 빔 보상을 위한 X-대역 위상 배열 안테나 모듈)

  • Choi, Woo-Yeol;Seo, Jung-Hoon;Kim, Hyun-Ho;Baek, Kun-Woo;Hong, Sung-Yong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.11
    • /
    • pp.978-986
    • /
    • 2016
  • X-band phased array antenna module for the compensation of deformed beam direction by wing deformation is designed and fabricated. The phased array antenna module consists of array antenna, phase shifter, power divider and control circuit. To select out the best component, the variation of radiation pattern by wing bending and phase error of components is simulated. The fabricated phased array antenna module shows an antenna gain of 5.84 dBi, a return loss of 13.6 dB and a bandwidth of 10.6 % at 9.375 GHz. The test bed was set up to verify the performance of beam direction compensation. This test confirmed that the main beam direction of array antenna has been well restored under wing bending of 9 %.

Satellite Communication Microstrip Antenna for Tx/Rx Dual Operation at X-Band (X 대역 위성통신 송/수신 겸용 마이크로스트립 안테나)

  • Kim, Kun-Woo;Lee, Sung-Jae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.2
    • /
    • pp.164-171
    • /
    • 2014
  • Transmit(Tx)/Receive(Rx) dual band operation microstrip array for X-band satellite communications are designed, fabricated, and measured in this paper. The microstrip array antenna has Right Handed Circular Polarization(RHCP) for Tx band and Left Hand Circular Polarization(LHCP) for Rx band. Two stacked patches are used for wideband characteristics and corner-truncated square patches are adopted for a circular polarization. To enhance bandwidth characteristics of a circular polarization, $2{\times}2$ sequential rotation array are applied. From the measured result, $8{\times}12$ microstrip array antennas have a good agreement with those of the simulation. Therefore the array antennas are applicable to military satellite communication antennas.

A Miniaturized and Band Rejection Characteristic of Bow-Tie Monopole UWB Antenna (보우-타이 모노폴 UWB 안테나의 소형화 및 대역 저지 특성)

  • Choi, Hyung-Seok;Choi, Kyoung;Hwang, Hee-Yong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.3
    • /
    • pp.300-305
    • /
    • 2012
  • In this paper, a miniaturized bow-tie monopole UWB antenna with band rejection characteristic is proposed. To miniaturize the proposed antenna, a perfect magnetic wall(PMW) condition is applied to primitive bow-tie monopole antenna. An uneven ground patch, a tapered feeding structure and a edge-chopped main patch are adapted for impedance matching. A quater-lambda slot resonator is inserted at main patch to prevent interference in UWB band from another band. The proposed antenna is fabricated on Taconic RF60-A substrate with relative permittivity of 6.15. The size of the proposed antenna is $30.0{\times}39.7mm^2$, which is only 45 % of the conventional bow-tie monopole antenna. The proposed antenna covers full UWB band with return losses less than -10 dB and has band stop characteristic in 5 GHz WLAN band. The maximum gains are within -1.0~5.0 dBi, the group delay variations are within 1.0 ns and the radiation patterns show directivity characteristics in x-y plane.

A Study on RCS(Radar Cross Section) Performance with Antenna Transmit Signal on/off in the X-band Incident Wave Environment (X-band 입사파 환경에서 안테나 송신 신호 on/off에 대한 RCS(Radar Cross Section) 성능에 관한 연구)

  • Jung, Euntae;Park, Jinwoo;Yu, Byunggil;Kim, Youngdam;Kim, Kichul;Seo, Jongwoo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.23 no.1
    • /
    • pp.59-65
    • /
    • 2020
  • Many technologies are being studied to reduce the RCS(Radar Cross Section) of stealth aircraft. Most RCS-reduction technlogies correspond to platforms. It is important to identify factors that RCS performance through simulation analysis of aircraft Mounted equipment. In particular, there are no studies of RCS performance in the radar frequency band when antenna transmit signals are applied. In this paper, the RCS performance variation on the transmit signal on/off of antennas mounted on a stealth aircraft was verified. Antennas were selected for each frequency band and simulated analysis to the RCS performance changes during antenna transmitting signal. Finally, to verify the characteristics of the change in RCS performance, RCS test measurements on the low-profile antenna transmit signal on/off were performed. In addintion, antenna RCS test measurement was performed according to the change of transmit signal power output. As a result, it was confirmed that there is no change in RCS performance when an antenna transmit signal is applied.

Design and Manufacture of X-Band 10 X 10 Waveguide Slot Array Antenna for SAR (SAR용 X-밴드 10 10도파관 슬롯 배열 안테나 설계 및 제작)

  • 신영종;이범선
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.11
    • /
    • pp.1019-1025
    • /
    • 2004
  • The X-band 10${\times}$10 waveguide slot array antenna for SAR is designed, fabricated and measured. The array antenna is designed using the equivalent circuit model based on the field distribution of the dominant mode, TE$\sub$10/, and EM simulation. The method to decide optimum angle of the centered inclined slot(coupling slot) and the optimum of offset of the longitudinal slot(radiating slot) is provided. The designed antenna structure is EM simulated and fabricated. The measured return loss bandwidth is 180 MHz at 9.15 GHz , the side lobe level is below -25 dB, HPBW is about 9$^{\circ}$, and the gain is 25.5 dB. These results are similar to the simulation data.