• Title/Summary/Keyword: X-Type Hot-Wire Probe(X-probe)

Search Result 28, Processing Time 0.021 seconds

Study on the Aerodynamic Characteristics of Hanyang Low Speed Wind Tunnel (한양대학교 중형 아음속 풍동의 공력특성에 관한 연구)

  • Go, Gwang Cheol;Jeong, Hyeon Seong;Kim, Dong Hwa;Jo, Jin Su
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.4
    • /
    • pp.92-98
    • /
    • 2003
  • The optimum design of Hanyang low speed wind tunnel has been performed to augment flow uniformity and to reduce turbulence intensity of wind tunnel test section have to be known for reliability of wind tunnel test. The non-uniformity and turbulence intensity of Hanyang low speed wind tunnel were measured with Pilot tube and X-type hot-wire probe at various wind speeds. As the results, the non-uniformity decreases as the wind speed increases. The non-uniformity is relatively high in the proximity of the diffuser. The turbulence intensity is a little higher than design requirement in the middle of the test section.

Turbulent Flow Field on Boundary Layer Flow Conditions in the Near-Wake of a Flat Plate (평판 근접 후류에서 경계층의 유동조건에 따른 난류유동장)

  • Kim, D.H.;Chang, J.W.
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.12 no.3
    • /
    • pp.25-39
    • /
    • 2004
  • An experimental study was quantitatively carried out in order to investigate the influence of flow conditions on a boundary layer in the near-wake of a flat plate. Tripping wires attached at various positions were selected to change flow conditions of a boundary layer in the vicinity of trailing edge. The flows such as laminar, transitional, and turbulent boundary layer at 0.98C from the leading edge are imposed to investigate the evolution of symmetric and asymmetric wake. Measurements were made at freestream velocity of 6.0m/s, and the corresponding Reynolds number is $2.8{\times}10^5$. An x-type hot-wire probe(55P61) was employed to measure at 8 stations in the near-wake region. Test results show that the near-wake of the flat plate for the case of a laminar and transitional boundary layer is sensitive to mean flow shear generated after separation but for the case of turbulent boundary layer is insensitive.

  • PDF

Reynolds Stress Distribution on Boundary Layer Flow Conditions in the Near-Wake of a Flat Plate (평판 근접 후류에서 경계층의 유동조건에 따른 레이놀즈 응력분포)

  • Kim, Dong-Ha;Chang, Jo-Won
    • Journal of ILASS-Korea
    • /
    • v.9 no.4
    • /
    • pp.53-66
    • /
    • 2004
  • An experimental study was carried out in order to investigate the influence of flow conditions on a boundary layer in the near-wake of a flat plate. The flow conditions in the vicinity of the trailing edge that is influenced by upstream condition history are an essential factor that determines the physical characteristics of a near-wake. Tripping wires attached at various positions were selected to change flow conditions of a boundary layer. The flows such as laminar, transitional, and turbulent boundary layer at 0.98C from the leading edge are imposed in order to investigate the evolution of symmetric and asymmetric wake. An x-type hot-wire probe(55P61) is employed to measure at 8 stations in the near-wake. Test results show that the near-wake for the case of a turbulent boundary layer is relatively insensitive to instability after separating at the trailing edge, and Reynolds shear stress in the near-wake for the case of a turbulent boundary layer collapses due to turbulent kinetic energy.

  • PDF

Wind Tunnel Study on Flow Characteristics around KRISO 300K VLCC Double-body Model (KRISO 300K VLCC 이중모형선의 유동특성에 대한 풍동실험 연구)

  • Hak-Rok Kim;Sang-Joon Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.36 no.3
    • /
    • pp.15-21
    • /
    • 1999
  • The flow characteristics around KRISO 300K VLCC double-body model have been experimentally investigated in a closed-type subsonic wind tunnel. The local mean velocity and turbulence statistics including turbulent intensity. Reynolds shear stress and turbulent kinetic energy were measured using a x-type hot-wire probe. The measurements were carried out at several transverse stations of the stern and near wake regions. The surface flow was visualized using on oil-film technique to see the flow pattern qualitatively. The flow in the stern and near wake region revealed complicated three-dimensional flow characteristics. The VLCC model shows a hook-shaped wake structure behind the propeller boss in the main longitudinal vortex region. The thin boundary layer at midship was increased gradually in thickness over the stern and evolved into a full three-dimensional turbulent wake.

  • PDF

Experimental Study on Turbulent Structure of Flow around KRISO 3600TEU Container Double-deck Model (KRISO 3600TEU 콘테이너 모형선 주위 유동의 난류구조에 관한 실험적 연구)

  • Hak-Rok Kim;Sang-Joon Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.36 no.3
    • /
    • pp.8-14
    • /
    • 1999
  • The flor characteristics around the KRISO 3600TEU container ship model have been experimentally investigated in a subsonic wind tunnel. The mean velocity and turbulence characteristics in the stern and wake regions were measured using an x-type hot-wire probe. The flow characteristics in the stern and near wake regions revealed a complicated three-dimensional flow pattern. The measured results showed clearly the formation of longitudinal vortices and their effect on the flow pattern in the wake region. The shear layer developed along the ship model expands showly to the downward direction. The turbulence statistics measured can be used as comparative data of numerical simulations and provide insights into development of accurate turbulence models for the ship design.

  • PDF

Drag Coefficient Variations of an Oscillating NACA 0012 Airfoil (진동하는 NACA 0012 에어포일에서의 항력계수 변화)

  • Kim, Dong-Ha;Chang, Jo-Won;Kim, Hak-Bong;Jeon, Chang-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.2
    • /
    • pp.137-145
    • /
    • 2008
  • An experimental study was performed in order to investigate the influence of Reynolds number on the drag coefficient variations of an oscillating airfoil. A NACA 0012 airfoil was sinusoidally pitched at the quarter chord point with an oscillating amplitude of ${\pm}6^{\circ}$. The free-stream velocities were 1.98, 2.83 and 4.03 m/s and the corresponding chord Reynolds numbers were $2.3{\times}10^4$, $3.3{\times}10^4$ and $4.8{\times}10^4$, respectively. The drag coefficient was calculated from the ensemble average velocity measured by an X-type hot-wire probe(X-type, 55R51) in the near-wakes region. In the case of Re=$2.3{\times}10^4$, variation of drag coefficient shows a negative damping (counter-clockwise variation), which implies an unstable state which could be excited by aerodynamic force, whereas the drag coefficient represents the positive damping (clockwise variation) as the Reynolds number increases from Re=$3.3{\times}10^4$ to $4.8{\times}10^4$. Hence, the drag coefficient variations show significant differences between Re=$2.3{\times}10^4$ and $4.8{\times}10^4$이다.

Effect of Periodic Passing Wake on the Flow Field of a Film-Cooled Flat Plate(I) (주기적인 통과후류가 막냉각되는 평판의 유동장에 미치는 영향(1);압력면과 흡입면에 대한 영향(1))

  • Kuk, Keon;Lee, Joon-Sik;Kauh, Sang-Ken
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.6
    • /
    • pp.1931-1940
    • /
    • 1996
  • The effect of periodic passing wake on the film-coolant flow issuing normally from a flat plate was investigated experimentally. The passing wake was generated by rotating thin circular bars. Depending on the rotational direction the test plate could be simulated as a pressure surface or a suction surface of a gas turbine blade. The phase-averaged velocity components were measured using an X-type hot-wire probe. The Reynolds number based on the free-stream velocity and injection hole diameter was 23, 500 and the velocity ratio which is the ratio of film coolant velocity to free-stream velocity was 0.5. The velocity-triangle induced by the wake was similar to that induced by the one generated at the blade trailing edge. The vertical velocity component induced by the passing wake, which approaches to the suction surface and moves away from the pressure surface, played a dominant role in the variation of the flow field. The variation in the phase-averaged velocity on the pressure surface was greater than on the suction surface, but the turbulence kinetic energy variation on the suction surface appeared larger than on the pressure surface.

Near-wake Measurements of an Oscillating NACA 0012 Airfoil (진동하는 NACA 0012 에어포일의 근접후류 측정)

  • Kim, Dong-Ha;Kim, Hak-Bong;Jang, Jo-Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.12
    • /
    • pp.1-8
    • /
    • 2006
  • An experimental study was carried out in order to investigate the influence of Reynolds number on the near-wake of an oscillating airfoil. An NACA 0012 airfoil was sinusoidally pitched at the quarter chord point, and is oscillated over a range of instantaneous angles of attack of $\pm$6$^{\circ}$. An X-type hot-wire probe was employed to measure the near-wake of an oscillating airfoil, and the smoke-wire visualization technique was used to examine the flow properties of the boundary layer. The free-stream velocities were 1.98, 2.83 and 4.03 m/s and the corresponding chord Reynolds numbers were 2.3${\times}10^4$, 3.3$\times$104 and 4.8${\times}10^4$, respectively. The frequency of airfoil oscillation was adjusted to fix a reduced frequency of K=0.1. The results show that the properties of the boundary layer and the near-wake can dramatically be distinguished in the range of Reynolds numbers between 2.3${\times}10^4$ and 3.3${\times}10^4$, on the other hand, it is similar in the cases of Re=3.3$\times$104 and 4.8$\times$104. This is caused by that the unsteady separation point is dramatically delayed in case of Re= 2.3${\times}10^4$.