• Title/Summary/Keyword: X-Ray Fluorescence (XRF)

Search Result 176, Processing Time 0.029 seconds

Removal of Heavy Metals(Pb, Cr) Using Waste Eggshell

  • Park, Heung-Jai;Bong, Sang-Hun;Jeong, Seong-Ug
    • Proceedings of the Korean Environmental Health Society Conference
    • /
    • 2005.06a
    • /
    • pp.386-393
    • /
    • 2005
  • The calcination characteristic of waste eggshell were examined by thermal gravimetric analysis (TGA), qualitative and quantitative analysis by X-ray fluorescence, and microstructural analysis by scanning electronic microscopy(SEM). The calcined sample was lager grain and pore size.

  • PDF

A Preliminary Study on the Fire Safety Testing Method for Fire-resistance Paints Using an X-ray Analysis Method (X-선 분석법을 이용한 내화도료의 화재안전성 평가 방법에 관한 기초연구)

  • Shim, Ji-Hun;Cho, Nam-Wook;Kim, Kang-Woo
    • Fire Science and Engineering
    • /
    • v.28 no.5
    • /
    • pp.58-63
    • /
    • 2014
  • Fire-resistance paints are supposed to become intumescent and diminish heat transfer along the steel frames in case of a fire. If unsatisfactory fire-resistance paints which do not satisfy their standard specification are used, it may result in a severe disaster. Because satisfactory fire-resistance paints are hardly discriminated from the unsatisfactory ones by a simple visual inspection, more reliable and convenient onsite evaluation methods are necessary. Here we report the preliminary study result on the fire safety testing method for fire-resistance paints using an X-ray analysis method. It was found that the existence and quantity of effective constituents in fire-resistance paints can be detected by the X-ray analysis method. X-ray fluorescence (XRF) analyses showed that P and Cl elements are much more enriched in fire-resistance paints, compared to normal paints. X-ray diffraction (XRD) analyses showed that ammonium polyphosphate is present as the main crystalline material in fire-resistance paints, but absent in normal paints. The X-ray analysis method is expected to be used for the onsite inspection of fire-resistance paints with the upcoming availability of portable XRF and XRD instruments.

Studies on the Distribution of Heavy Metal Concentrations in Ambient Suspended Particulate Matters Using the X-ray Fluorescence Spectroscopy (X-선 형광분광법을 이용한 대기부유분진중 중금속의 농도분포에 관한 연구)

  • 이태정;김동술
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.8 no.1
    • /
    • pp.20-28
    • /
    • 1992
  • The x-ray fluorescence(XRF) is one of the most convenient and widely used techniques for analyzing trace elements in ambient particulate matters. The objects of the study were to estimate the optimum exposure time using the XRF, to investigate the distributions of heavy metal levels in particulate matters, and finally to study seasonal variation for the concentrations of total suspended particulate matters(TSP) and size fractionated particulate matters. The suspended particulate matters had been collected by a cascade impactor having 9 size fragnated stages for 3 years(Dec. 1988 to Nov. 1991) in Kyung Hee University-Suwon Campus. The particulate matters were then collected on each stage by membrane filters. The weight concentrations were determined by the XRF system. Thus, seasonal variations and relationship between concentration and particle size could be investigated. Resulting distribution was bimodal with the coarse and the fine particle groups minimum occurring around 2.1 to 3.3 $\mu$m as an aerodynamic diameter. To determine optimum exposure time of the XRF for various trace inorganic elements, membrane filters and the NIST standard filters were extensively studied. Using a statistical technique, optimum exposure time was estimated for each trace element and overall elements. The time was then determined as 20 seconds for the XRF system. The concentration of TSP was 123.9$\mum/m^3$ on an arithmatic average. The levels of each inorganic metal were Si 2420.0ng/$m^3$, Fe 977.1ng/$m^3$, and so on. The Pb. Zn, and Cu abounded in the fine mode group, while Ca, Fe, Si, Al, and K in the coarse group. Marked seasonal variation of TSP and metal concentrations was observed. The concentration of heavy metals in the fine mode was highest in winter : on the other hand, that in the coarse mode was highest in spring.

  • PDF

The Result of the Pigment Analysis of the Mural in Ssangyeongchong (Tomb of Two Pillars) from Goguryeo (고구려(高句麗) 쌍영총(雙楹塚) 벽화(壁畫)의 안료분석(顔料分析))

  • Yu, Heisun
    • Conservation Science in Museum
    • /
    • v.6
    • /
    • pp.47-54
    • /
    • 2005
  • The elements of the pigments used on the wall painting in Ssangyeongchong (Tomb of Two Pillars) from Goguryeo in the Nampo area of Pyeongyang were analyzed to confirm their mineral compositions and features of the painting. Specifically, the non-destructive X-ray fluorescence spectrometer (XRF) was used. On the other hand, the mineral composition of the background and pigment layers were analyzed using an X-ray diffractometer (XRD). The results of these analyses suggested that the lips of the characters in the painting were painted with HgS, and their faces, painted with HgS(Cinnabar/ vermilion) mixed with CaCO3. Note that lead white pigment [2PbCO3·Pb(OH)2] was found only on the bottom layer of the painting, indicating that the wall painting was likely to have been created using the Secco method.

A Study on the Soil Contamination(Maps) Using the Handheld XRF and GIS in Abandoned Mining Areas (휴대용 XRF와 GIS를 이용한 폐광산 지역의 토양오염에 관한 연구)

  • Lee, Hyeon-Gyu;Choi, Yo-Soon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.17 no.3
    • /
    • pp.195-206
    • /
    • 2014
  • In this study, soil contamination maps related to Cu and Pb were created at the Busan abandoned mine in Korea using a handheld X-Ray Fluorescence(XRF) and Geographic Information Systems(GIS). Hydrological analysis was performed using the Digital Elevation Model(DEM) of the study area to identify the flow directions of surface runoff where pollutants can be dispersed from the soil contamination sources. 24 locations for measuring the soil contamination related to Cu and Pb were selected by considering the result of hydrological analysis. The results measured at the 24 locations using the handheld XRF showed that the highest value of Cu contamination is 8,255ppm and that of Pb is 2,146ppm. The field investigation data were entered into ArcGIS software, and then soil contamination maps regarding Cu and Pb with a 5m grid-spacing were created after performing spatial interpolations using the ordinary kriging method. As a result, we could know that high concentrations of Cu and Pb are presented at the waste and tailings dumps around the abandoned mine openings. This study also showed that the handheld XRF and GIS can be utilized to create soil contamination maps related to Cu and Pb in the field.

Discrimination of geographical origin for soybeans using ED-XRF (ED-XRF (Energy Dispersive X-ray Fluorescence spectrometer)를 이용한 콩 원산지 판별)

  • Lee, Ji-Hye;Kang, Dong-Jin;Jang, Eun-Hee;Hur, Suel-Hye;Shin, Byeung-Kon;Han, Guk-Tak;Lee, Seong-Hun
    • Korean Journal of Food Science and Technology
    • /
    • v.52 no.2
    • /
    • pp.125-129
    • /
    • 2020
  • In this study we developed a method for determining the geographic origin of soybeans by combining energy dispersive X-ray fluorescence spectrometry with statistical analysis. In 2018, 197 soybean samples (100 Korean domestic samples and 97 foreign samples) were collected for the construction of a geographic origin model. The mineral concentrations of 26 elements were measured and determined via the fundamental parameters approach. One-way analysis of variance, t-test, and canonical discriminant analysis were employed to reveal five elements (P, Ni, Br, Zn, and Mn) that could be used for the determination of geographic origins. The sensitivity, specificity, and efficiency for the above method were 91.0, 95.9, and 93.4%, respectively. Validation results from 60 samples collected in 2019 showed a predictive rate of 93.3% for Korean domestic soybeans and 100.0% for foreign soybeans. In conclusion, the combination of energy dispersive X-ray fluorescence spectrometry and chemometrics could be used to effectively determine the geographic origin of soybeans.

A Preliminary Study of Korean Geostansdards Using Mesozoic Granites (중생대 화강암을 이용한 한국산 지질 표준물질 제작을 위한 예비연구)

  • Jin, Mi-Eun;Sun, Gwang Min;Park, Sang Gu;Jwa, Yong-Joo
    • Journal of the Korean earth science society
    • /
    • v.38 no.6
    • /
    • pp.421-426
    • /
    • 2017
  • In this study, we selected three representative granite samples and conducted petrological observation to establish the Korean geostandards. Samples were taken from the two Jurassic (KJG-1, KJG-2) and one Cretaceous (KCG-1) granites in South Korea. The powder samples were prepared by the standard pulverization process, and glass beads were made for geochemical analysis using X-ray fluorescence (XRF) method, and finally, major element contents of the samples were acquired. The analytical data are shown with mean, standard deviation and relative standard deviation. The accuracy of the analysis was confirmed within an estimated error range of about 5% by comparing the recommended true values of the USGS and GSJ geostandards. Also, we checked the analytical precision by calculating a relative standard deviation of about 3% from the XRF analytical results for the three samples.

Preparation and Structure Properties of LaBa2Cu2O9, LaBa22CaCu3O12 and LaBa2Ca2Cu5O15 Perovskites

  • Kareem Ali Jasim;Hind Abdulmajeed Mahdi;Rafah Ismael Noori;Marwa Ayad Abdulmajeed
    • Korean Journal of Materials Research
    • /
    • v.33 no.9
    • /
    • pp.367-371
    • /
    • 2023
  • In this study we examine variations in the structure of perovskite compounds of LaBa2Cu2O9, LaBa22CaCu3O12 and LaBa2Ca2Cu5O15 synthesized using the solid state reaction method. The samples' compositions were assessed using X-ray fluorescence (XRF) analysis. The La: Ba: Ca: Cu ratios for samples LaBa2Cu2O9, LaBa22CaCu3O12 and LaBa2Ca2Cu5O15 were found by XRF analysis to be around 1:2:0:2, 1:2:1:3, and 1:2:2:5, respectively. The samples' well-known structures were then analyzed using X-ray diffraction. The three samples largely consist of phases 1202, 1213, and 1225, with a trace quantity of an unknown secondary phase, based on the intensities and locations of the diffraction peaks. According to the measured parameters a, b, and c, every sample has a tetragonal symmetry structure. Each sample's mass density was observed to alter as the lead oxide content rose. Scanning electron microscope (SEM) images of the three phases revealed that different Ca-O and Cu-O layers can cause different grain sizes, characterized by elongated thin grains, without a preferred orientation.