• Title/Summary/Keyword: X-Band Frequency

Search Result 365, Processing Time 0.029 seconds

The Calculation of the Energy Band Gaps and Optical Constants of Zincblende InyGa1-yAs1-xNx on Composition (조성비 변화에 따른 질화물계 화합물 반도체 InyGa1-yAs1-xNx의 에너지 밴드갭과 광학상수 계산)

  • Chung, Ho-Yong;Kim, Dae-Ik
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.5
    • /
    • pp.877-886
    • /
    • 2019
  • The energy band gaps and optical constants of zincblende $In_yGa_{1-y}As_{1-x}N_x$ on the variation of temperature and composition are determined by using band anticrossing method. The energy band gaps are decreasing continuously in $In_yGa_{1-y}As_{1-x}N_x$ ($0{\leq}x{\leq}0.05$, $0{\leq}y{\leq}1.0$, 300K) and the bowing parameter is calculated as 0.522eV. The calculation results of energy band gaps are consistent with those of other studies. A refractive index n and a high-frequency dielectric constant ${\varepsilon}$ are calculated by a proposed modeling equation using the results of energy band gaps.

Low Phase Noise Design and Implementation of X -Band Frequency Synthesizer for Radar Receiver (레이다 수신기용 X-밴드 주파수 합성기의 저 위상잡음설계 및 구현)

  • So, Won-Wook;Kang, Yeon-Duk;Lee, Taek-Kyung
    • Journal of Advanced Navigation Technology
    • /
    • v.2 no.1
    • /
    • pp.22-33
    • /
    • 1998
  • In the coherent-on-receiver radar system using the magnetron source, frequency synthesizer is employed as a STALO(Stable Local Oscillator) to keep the intermediate frequency stable. In this paper, X-band(8.4GHz~9.7GHz) single loop frequency synthesizer is designed and implemented by an indirect frequency synthesis technique. Phase comparison is performed by a digital PLL(Phase-Locked Loop) chip and the loop filter is designed for the low phase noise. The effects of loop component characteristics on the output phase noise are analyzed for single loop structures, and the calculated results are compared with the measured data.

  • PDF

Narrow Band-pass Filter with Dual-band Using Pseudo-Combline (Pseudo-Combline을 이용한 이중대역 협대역 대역통과 여파기)

  • Yoon, Ki-Cheol;Lee, Hyun-Wook;Li, Meng;Lee, Jae-Yeong;Lee, Jong-Chul
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.10 no.6
    • /
    • pp.84-90
    • /
    • 2011
  • In this paper, a dual-band pseudo-combline narrow bandpass filter is proposed. The proposed bandpass filter adopts the open resonant stubs and the proposed bandpass filter can be used for ITS(Intelligent Transport System) and X-band satellite systems application. The proposed bandpass filter has the insertion and return losses of 1.72 dB and 15.5 dB at the bandwidth of 3.6 % and center frequency of 5.8 GHz, respectively. Also, the second operating frequency band for insertion and return losses are 1.92 dB and 16.3 dB at the bandwidth of 3% and center frequency of 8.5 GHz, respectively.

A STUDY ON THE DESIGN OF THE MICROSTRIP PATCH ANTENNA (마이크로스트립 패치 안테나의 설계에 관한 연구)

  • 육종관;박한규;송우영;박한규
    • Proceedings of the Korean Institute of Communication Sciences Conference
    • /
    • 1988.10a
    • /
    • pp.118-121
    • /
    • 1988
  • Previous antenna design formula produce some errumenous resulitat the high frequency(above x-band.) This is because of the dispersion effect. Surface wave and higher order modes We propose exact design formula which gives errors less then 0.5% at the above x-band Exper imental investigations also prove the exactness of the proposed formual Further investigations should be done to give the relations between surface wave poles higer mides and resonant frequency.

  • PDF

Design of Ferrite Composite Microwave Absorber (복합 Ferrite 전파흡수체의 설계방안)

  • 신재영;오재희
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.1
    • /
    • pp.11-16
    • /
    • 1994
  • The impedance matching solution map is not a sufficient method for designing the broad-band absorber because of its difficulty to get numerical data about practical band-width. Therefore, we develope a new method to design the broad-band absorber. The complex permeability limits, which is necessary for designing the broad-band absorber in C-X band (4 GHz~12.4 GHz) were investigated and application was also examined. The complex permeability limits represent the frequency dependence of the complex permeability at a practical frequency band. These complex permeability limits can be used effectively to design broad-band single-layered absorber because they offer numerical data about the band-width in the case of various dielectric loss tangent, practical frequency bands and permitted reflection losses of an absorber.

  • PDF

The Magnetic Properties of Polycrystalline Yttrium Iron Garnet by Ferromagnetic Resonance (강자성공명 현상을 이용한 YIG의 자기적 특성 연구)

  • 김기현;이대하;김영호
    • Journal of the Korean Magnetics Society
    • /
    • v.9 no.1
    • /
    • pp.7-16
    • /
    • 1999
  • Stoichiometric and nonstoichiometric $Y_{3-x}Fe_{5+x}O_{12})$ polycrystalline samples (x=0.00, 0.05, 0.10, 0.30, -0.05, -0.10, -0.30) were prepared by solid state reaction method. The magnetic properties of the sample were investigated by FMR (ferromagnetic resonance) technique at microwave frequency 5.11 GHz (G-band) and 23.39 GHz (K-band) respectively. The spectroscopic splitting factor g were estimated to be 2.04~2.35 from the derivative absorption lines. As the samples became yttrium $(Y^{3+})$ excess and iron $(Fe^{3+})$ excess, Magnetizations were decreased. But resonance linewidth were increased. To investigate the anisotropy, the angular dependence of resonance magnetic fields were measured. Angular dependence of effective magnetizations were measured by FMR from 77 K to 300 K at K-band microwave frequency (23.39 GHz) and the saturation magnetizations were measured by VSM. The Bloch coefficients B and C were determined by fitting. $M_{eff}(0)$ was obtained by the extrapolation from 80 K. From this result, the spin wave stiffness constant D $(about\; 162~206 \;eV{\AA}^2)$and average square range of exchange interaction $$$(about \;5.84~12.13\;{\AA}^2)$ were determined.

  • PDF

Design and Fabrication of A Doppler Radar for Motion Detector Using Frequency Tunable Hairpin Resonator (주파수 가변형 헤어핀공진기를 이용한 동작감지용 도플러 레이더센서의 제작 및 설계)

  • Kim, Eun-Su;Kim, Gue-Chol
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.5
    • /
    • pp.931-936
    • /
    • 2018
  • We designed an x-band radar for motion detector using a frequency tunable hairpin ring resonator. The proposed doppler radar sensor can vary the oscillation frequency by applying a hairpin resonator using a varactor diode to the oscillator, and this can also reduce the size by transmitting and receiving a signal from Tx/Rx dual antenna. The fabricated doppler radar sensor was fabricated in $30{\times}24mm$, and it was confirmed that the pulse width difference occurred according to the distance from the object. The measurement results showed oscillation at 10.525GHz. We confirmed that it is enough to use as radar for motion detection from the measured results.

An Antenna-Integrated Oscillator Design Providing Convenient Control over the Operating Frequency and Output Power (동작주파수 및 출력파워 조절이 용이한 신호생성용 안테나 설계)

  • Lee, Dong-Ho;Lee, Jong-In;Kim, Mun-Il
    • Journal of Satellite, Information and Communications
    • /
    • v.1 no.1
    • /
    • pp.54-58
    • /
    • 2006
  • A new design for easily controlling operating frequency of an antenna-integrated planar oscillator is introduced. The oscillator circuit of a broadband negative-resistance active part and a passive load including a patch antenna. The patch resonance is used for determining the oscillation frequency. This design reduces the possibility of mismatch between antenna radiation and oscillation frequencies. To achieve optimum output power, load-pull simulation for the negative-resistance circuit is used. The load-pull simulation shows the feed point and the delay of feed line can affect the oscillation power. Two negative-resistance circuits capable of supporting oscillation over full C-band and X-band are fabricated. The oscillation frequency, output power and phase noise for different patch antennas are measured.

  • PDF

Origin of the Initial Permeabiliy of Ni0.8-xZn0.2CoxFe2O4+δ Ferrite (Ni0.8-xZn0.2CoxFe2O4+δ조성 페라이트의 투자율 변화 기구)

  • 안용운;김종령;오영우
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.1
    • /
    • pp.46-51
    • /
    • 2004
  • The cause for the variation of the initial permeability according to the Co substitution of Ni-Zn ferrite used in the LC resonance filter for the power line communication is studied. The initial permeability decreases as the quantity of Co diminishes, and the saturation magnetization increases as the quantity increases. Because the sintering density and the microstructure of ferrite show little change, the variation of the initial permeability can't be explained by the density, microstructure nor the saturation magnetization factor. The magnetocrystalline anisotropy increases, similar with the saturation magnetization, as the quantity of Co increases. The increase of magnetocrystalline anisotropy value makes the domain wall energy grow, which leads to the decrease of the initial permeability, because there's linear law between the magnetocrystalline anisotropy and the domain wall energy. The resonance frequency to Co substitution moved to high frequency band, due to the close relationship with domain wall energy, Initial permeability decreaed a little with an increase of Co contents, but resonace frequency moved to high frequency band. as a result of that, when Co was added 0.05 mol, initial permeability and resonace frequency was 75 and 25 MHz respectively.

A Study on the Realization of X-Band Harmonic Generator (X-밴드 고조파 발생기의 구현에 관한 연구)

  • 김영범;홍헌진;박동철;오승협
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.4
    • /
    • pp.513-519
    • /
    • 1990
  • In order to realize an efficient and stable X-band harmonic generator, a 100 MHz frequency multiplier, an impulse generator using SRD(Step Recovery Diode) module, and a narrow-band bandpass waveguide filter have been designed and tested. By properly combining these devices an X-band harmonic generator has been realized. The output power of the harmonic generator was measured to be -1.5 dBm at 9 GHz which is the 90th harmonic of the 100MHz input. The power fluctuation of the harmonic generator due to temperature variation was observed to the about 0.15 dB during 24 hours of 4\ulcorner temperature variation.

  • PDF