• Title/Summary/Keyword: X형 관이음부

Search Result 5, Processing Time 0.017 seconds

A Numerical Study on the Static Strength of Tubular X-Joints With an Internal Ring Stiffener (환보강 X형 관이음부의 정적강도에 관한 수치적 연구)

  • Ryu Yeon-Sun;Cho Hyun-Man
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.18 no.3
    • /
    • pp.265-275
    • /
    • 2005
  • The objective of this paper is to numerically assess the behavior of tubular X-joints with an internal ing stiffener, and to evaluate the reinforcement effect of a ring stiffener, and to establish the strength formulae. Nonlinear finite element analysis is used to compute the static strength of axially loaded tubular joints. Numerical and experimental results are in good agreement for tubular X-joints. The chord lengths of simple and ring-stiffened X-joints are suggested to reduce chord end effect. And, internal ring stiffener is found to be efficient In improving static strength of tubular X-joints. Maximum strength ratios are calculated as $1.5\sim3.5$. Regression analyses are performed considering practical size of ring stiffener and strength estimation formulae for tubular X-joints with an internal ring stiffener are proposed.

Effect of Reinforcement Type on Ultimate Strength of Tubular X-Joints (X형 관이음부의 보강방법에 따른 극한강도 해석)

  • 조현만;류현선;김정태
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.10a
    • /
    • pp.230-237
    • /
    • 2000
  • Tubular joints of jacket structures are usually reinforced using thicker can section, internally ring stiffeners, diaphragm, or externally gusset plates to increase load carry capacity. In this paper, the effect of reinforcement type and geometric parameters of stiffener on the ultimate strength of tubular X-joints subjected to brace compression have been studied numerically Three reinforcement methods were considered; (1)can reinforcement (2)internally ring stiffener (3)internally longitudinal diaphragm. The ANSYS software was used nonlinear strength analysis. It was found that there is significant strength enhancement for reinforced joints.

  • PDF

Axial Strength Evaluation for Tubular X-Joints with Internal Ring Stiffener (고리형 내부 보강재를 가진 X형 관이음부의 축방향 강도 평가)

  • 조현만;류연선;김정태
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.04a
    • /
    • pp.162-169
    • /
    • 2001
  • Tubular joints are usually reinforced using thicker can section or ring stiffeners to increase the load carrying capacity. In this paper, a numerical study has been performed for evaluation of axial strength for X-joints with internal ring stiffener, The finite element analysis software was used for nonlinear strength analysis. According to variation of ring geometries, the effect of ring stiffener for X-joints are investigated. Internal ring stiffener is found to be efficient improving ultimate strength of tubular joints. Relations of thickness of ring and axial strength are observed considering geometric parameters of ring stiffeners.

  • PDF

Strength Prediction and Optimum Design of Internally Ring-Stiffened Tubular X-and T-Joints (내부 환보강 X형 및 T형 관이음부의 강도산정과 최적설계)

  • Cho, Hyun-Man;Ryu, Yeon-Sun;Lee, Hyun-Jin
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.315-320
    • /
    • 2007
  • An effective reinforcement method for steel tubular joints having a large chord diameter is the use of internal ring stiffeners. This paper presents the results of a numerical study on the static strength of internally ring-stiffened tubular X- and T-joints subjected to brace axial compression loading. Nonlinear finite element analyses are used to compute the joint strength. The influence of geometrical parameters has been studied and the maximum reinforcement effect of a ring stiffener has been evaluated. A strength ratio is defined. by the ratio of ring-stiffened joint strength to unstiffened joint strength, and an equation for this strength ratio is derived by regression analysis. Design optimization for ring stiffener of tubular joints is carried out using metropolis genetic algorithm.

  • PDF

Strength Evaluation Formulae for Ring-Stiffened Tubular X-Joints (내부 환보강 X형 관이음부의 강도산정식)

  • 조현만;류연선
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.04a
    • /
    • pp.61-68
    • /
    • 2002
  • Tubular members have been applied in a wide range of frame structures including offshore structures. For the efficient load flow in tubular-member structures, the joints of tubular members are usually reinforced using internal ring stiffener for the steel tubular joint having a large diameter. The objective of this paper is to numerically assess the behavior of X-joints with an internal ring stiffener, and to evaluate the reinforcement effect of a ring stiffener, and to establish the strength formulae. Nonlinear finite element analysis is used to compute the static strength of axially loaded tubular joints. From the numerical results, internal ring stiffener is found to be efficient in improving static strength of tubular X-joints. Maximum strength ratios are calculated as 1.5~3.5, and the effective dimensions of ring stiffener are found. Regression analyses are performed considering practical size of ring stiffener and strength estimation formulae are proposed.

  • PDF