• Title/Summary/Keyword: Wu model

Search Result 822, Processing Time 0.026 seconds

A Basic Study on the Probabilistic Reliability Evaluation of Power System Considering Solar/Photovoltaic Cell Generator (태양광발전원을 고려한 전력계통의 신뢰도평가에 관한 기초연구)

  • Park, Jeong-Je;Wu, Liang;Choi, Jae-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2008.11a
    • /
    • pp.19-21
    • /
    • 2008
  • Renewable energy resources such as wind, wave, solar, micro hydro, tidal and biomass etc. are becoming importance stage by stage because of considering effect of the environment. Solar energy is one of the most successful sources of renewable energy for the production of electrical energy following wind energy. And, the solar/photovoltaic cell generators can not make two-state model as conventional generators, but should be modeled as multi-state model due to solar radiation random variation. The method of obtaining reliability evaluation index of solar cell generators is different from the conventional generators. This paper presents a basic study on reliability evaluation of power system considering solar cell generators with multi-states.

  • PDF

Asymmetric Semi-Supervised Boosting Scheme for Interactive Image Retrieval

  • Wu, Jun;Lu, Ming-Yu
    • ETRI Journal
    • /
    • v.32 no.5
    • /
    • pp.766-773
    • /
    • 2010
  • Support vector machine (SVM) active learning plays a key role in the interactive content-based image retrieval (CBIR) community. However, the regular SVM active learning is challenged by what we call "the small example problem" and "the asymmetric distribution problem." This paper attempts to integrate the merits of semi-supervised learning, ensemble learning, and active learning into the interactive CBIR. Concretely, unlabeled images are exploited to facilitate boosting by helping augment the diversity among base SVM classifiers, and then the learned ensemble model is used to identify the most informative images for active learning. In particular, a bias-weighting mechanism is developed to guide the ensemble model to pay more attention on positive images than negative images. Experiments on 5000 Corel images show that the proposed method yields better retrieval performance by an amount of 0.16 in mean average precision compared to regular SVM active learning, which is more effective than some existing improved variants of SVM active learning.

A New Pattern of Technology Transfer in Rural China: Triple Helix of Academy-agriculture-government Relations in Baoji City

  • Tu, Jun;Gu, Shulin;Wu, Guisheung
    • Journal of Technology Innovation
    • /
    • v.13 no.2
    • /
    • pp.157-178
    • /
    • 2005
  • During the transformation of the agro-technology extension in rural China, many new Policy experiments are emerging to rebuild the lost linkages and to improve technology transfer with the system and among systems. Applying the Triple Helix Model of academy-agriculture-government relations, this paper explores a new pattern of technology transfer with the case of BaojiCity. The authors interpret the mechanism of 'Courtyards for Agro-experts', as well as the comparison between different types of courtyards. This article concludes that the Triple Helix in the agro-sector improves technology transfer and accelerates knowledge-based regional development. In the interest of farmers there should also be concern over reducing inequity the reform.

  • PDF

Hierarchical Identity-Based Encryption with Constant-Size Private Keys

  • Zhang, Leyou;Wu, Qing;Hu, Yupu
    • ETRI Journal
    • /
    • v.34 no.1
    • /
    • pp.142-145
    • /
    • 2012
  • The main challenge at present in constructing hierarchical identity-based encryption (HIBE) is to solve the trade-off between private-key size and ciphertext size. At least one private-key size or ciphertext size in the existing schemes must rely on the hierarchy depth. In this letter, a new hierarchical computing technique is introduced to HIBE. Unlike others, the proposed scheme, which consists of only two group elements, achieves constant-size private keys. In addition, the ciphertext consists of just three group elements, regardless of the hierarchy depth. To the best of our knowledge, it is the first efficient scheme where both ciphertexts and private keys achieve O(1)-size, which is the best trade-off between private-key size and ciphertext size at present. We also give the security proof in the selective-identity model.

Computational study on turbulent flows inside the duct of marine waterjet propulsor (선박 워터제트 추진기 덕트 내부의 난류유동 해석에 관한 연구)

  • Park Il-Ryong;Kim Wu-Joan;Ahn Jong-Woo;Kim Ki-Sup
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.181-184
    • /
    • 2002
  • CFD calculations are carried out to investigate the turbulent flow characteristics inside the duct of marine waterjet propulsors. The Reynolds-averaged Wavier-Stokes equations are solved using a finite-volume method. Standard $k-{\varepsilon}$ model and realizable $k-{\varepsilon}$ model are evaluated with an existing experimental data. Multi-block grid topology is adopted to describe the details of complex duct geometry. The present numerical methods are applied to the preliminary duct design of new waterjet propulsor system. Four different influx conditions are simulated to find out pressure and velocity distribution inside the intake duct. Attention is also paid upon the possible flow separation inside the waterjet duct. It is found that CFD tools can be used for the initial evaluation of inflow condition into the impeller of waterjet propulsor system.

  • PDF

C0-type Reddy's theory for composite beams using FEM under thermal loads

  • Fan, Xiaoyan;Wu, Zhen
    • Structural Engineering and Mechanics
    • /
    • v.57 no.3
    • /
    • pp.457-471
    • /
    • 2016
  • To analyze laminated composite and sandwich beams under temperature loads, a $C^0$-type Reddy's beam theory considering transverse normal strain is proposed in this paper. Although transverse normal strain is taken into account, the number of unknowns is not increased. Moreover, the first derivatives of transverse displacement have been taken out from the in-plane displacement fields, so that the $C^0$ interpolation functions are only required for the finite element implementation. Based on the proposed model, a three-node beam element is presented for analysis of thermal responses. Numerical results show that the proposed model can accurately and efficiently analyze the thermoelastic problems of laminated composites.

Determination of Optimal Build Orientation Based on Satisfactory Degree Theory for RPT

  • Zhao, Jibin;Liu, Weijun;Wu, Jianhuang
    • International Journal of CAD/CAM
    • /
    • v.6 no.1
    • /
    • pp.51-58
    • /
    • 2006
  • In rapid prototyping, the optimal part orientation during fabrication is critical as it can improve part accuracy, minimize the requirement for supports and reduce the production time. Through investigating the geometric issues of STL model and process planning of RPM, This paper establishes optimizing model based on the considerations of staircase effect, support area and production time. The general satisfactory degree function is constructed employing the multi-objective optimization theory based on the general satisfactory degree principle. The best part-building orientation is obtained by solving the function employing generic algorithm. Experiment shows that the methods can effective resolve the part-building orientation in RP.

Reliability Evaluation of a Distribution System with wind Turbine Generators Based on the Switch-section Partitioning Method

  • Wu, Hongbin;Guo, Jinjin;Ding, Ming
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.3
    • /
    • pp.575-584
    • /
    • 2016
  • Considering the randomness and uncertainty of wind power, a reliability model of WTGs is established based on the combination of the Weibull distribution and the Markov chain. To analyze the failure mode quickly, we use the switch-section partitioning method. After defining the first-level load zone node, we can obtain the supply power sets of the first-level load zone nodes with each WTG. Based on the supply sets, we propose the dynamic division strategy of island operation. By adopting the fault analysis method with the attributes defined in the switch-section, we evaluate the reliability of the distribution network with WTGs using a sequential Monte Carlo simulation method. Finally, using the IEEE RBTS Bus6 test system, we demonstrate the efficacy of the proposed model and method by comparing different schemes to access the WTGs.

Analysis of local vibrations in the stay cables of an existing cable-stayed bridge under wind gusts

  • Wu, Qingxiong;Takahashi, Kazuo;Chen, Baochun
    • Structural Engineering and Mechanics
    • /
    • v.30 no.5
    • /
    • pp.513-534
    • /
    • 2008
  • This paper examines local vibrations in the stay cables of a cable-stayed bridge subjected to wind gusts. The wind loads, including the self-excited load and the buffeting load, are converted into time-domain values using the rational function approximation and the multidimensional autoregressive process, respectively. The global motion of the girder, which is generated by the wind gusts, is analyzed using the modal analysis method. The local vibration of stay cables is calculated using a model in which an inclined cable is subjected to time-varying displacement at one support under global vibration. This model can consider both forced vibration and parametric vibration. The response characteristics of the local vibrations in the stay cables under wind gusts are described using an existing cable-stayed bridge. The results of the numerical analysis show a significant difference between the combined parametric and forced vibrations and the forced vibration.

RTS test study and numerical simulation of mechanical properties of HDR bearings

  • Peng, Tianbo;Wu, Yicheng
    • Earthquakes and Structures
    • /
    • v.13 no.3
    • /
    • pp.299-307
    • /
    • 2017
  • High Damping Rubber bearings (HDR bearings) have been used in the seismic design of bridge structures widely in China. In earthquakes, structural natural periods will be extended, seismic energy will be dissipated by this kind of bearing. Previously, cyclic loading method was used mainly for test studies on mechanical properties of HDR bearings, which cannot simulate real seismic responses. In this paper, Real-Time Substructure (RTS) test study on mechanical properties of HDR bearings was conducted and it was found that the loading rate effect was not negligible. Then the influence of peak acceleration of ground motion was studied. At last test results were compared with a numerical simulation in the OpenSees software framework with the Kikuchi model. It is found that the Kikuchi model can simulate real mechanical properties of HDR bearings in earthquakes accurately.