• Title/Summary/Keyword: Wrought alloy

Search Result 63, Processing Time 0.026 seconds

Grain Size Effect on Formability of Mg alloys (Mg 합금의 성형성에 미치는 결정립 크기의 영향)

  • Kim, T.O.;Kwon, Y.N.;Lee, J.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.448-451
    • /
    • 2008
  • Magnesium alloys still have a lot of technical challenges to be solved for more applications. There have been many research activities to enhance formability of magnesium alloys. One is to design new alloy composition having better formability. Also, low formability of wrought alloys can be improved by optimizing the processing variables. In the present study, effect of process variables such as forging temperature and forging speed were investigated to forgeability of three different magnesium alloys such as AZ31, AZ61 and ZK60. To understand the effect of process variables more specifically, both numerical and experimental works have been carried out on the model which contains both upsetting and extrusion geometries. Forgeability of magnesium alloys was found to depend more on the forging speed rather than temperature. Forged sample showed a significant activity of twinning, which was found to be closely related with flow uniformity.

  • PDF

Fabricating Apparatus of Rheological Material by Rotational Barrel (회전식 Barrel에 의한 레오로지 소재 제조장치)

  • Kim T. W.;Seo P. K.;Oh S. W.;Kang C. G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.358-361
    • /
    • 2005
  • The rotational barrel type equipment has been designed for the new rheology fabrication process. During the continuous rotation of barrel with a constant temperature, the shear rate is controlled with the rotation speed and rotation time of barrel. The barrel surface can be controlled the temperature by the induction heating and cooling system. Many experiments were widely examined by using this system with controlling the rotation speed and the rotation time. The possibility for the rheoforming process was investigated with microstructural characteristics.

  • PDF

Solid State Diffusion Brazing of the Aluminum Alloy Castings According to the Heat Treatment Conditions (열처리온도 및 시간에 따른 알루미늄 주조재의 고상확산 접합 특성)

  • Sun, J.H.;Shin, S.Y.;Hong, J.W.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.21 no.6
    • /
    • pp.300-306
    • /
    • 2008
  • Solid state diffusion brazing of aluminum castings (AC4C) and wrought alloys (Al6061) was conducted in order to improve thermal conductivity and temperature uniformity of the aluminum heater which was generally fabricated by casting method. Tensile strength and thermal conductivity are raised with increasing brazing temperature, obtaining 122.5 MPa and $206W/m{\cdot}K$ at $540^{\circ}C$ 5hrs brazing conditions, respectively. The diffusion brazed heater, shows maximum temperature difference of $4^{\circ}C$, exhibits a enhanced temperature uniformity compared with the cast heater having the maximum temperature difference of $11^{\circ}C$.

Establishment of Process of Manufacture of Ti-6Al-4V Alloy Sintering Body by MIM

  • Otsuka, A.;Suzuki, K.;Achikita, M.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.759-760
    • /
    • 2006
  • Ti-6Al-4V has low specific gravity, high corrosion resistance and superior mechanical properties but it is very difficult to control oxygen content in MIM process. It is necessary to use powders with coarse particle size to decrease oxygen content of powders, so feedstocks with poor fluidity and sintered bodies with lower density are obtained in such cases. Fine titanium hydride-dehydride powders were blended with atomized powders to accomplish higher fluidity and sintered density. Sintered bodies had higher sintered density and mechanical properties equivalent to those of wrought materials by controlling oxygen content less than 0.35mass%.

  • PDF

Fabricating Apparatus of Rheological Material for forging by Rotational Barrel (회전식 바렐에 의한 단조용 레오로지 소재 제조)

  • Kim T.W.;Seo P.K.;Oh S.W.;Kang C.G.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.645-648
    • /
    • 2005
  • The rotational barrel type equipment has been designed for the new rheology fabrication process. During the continuous rotation of barrel with a constant temperature, the shear rate is controlled with the rotation speed and rotation time of barrel. The barrel surface can be controlled the temperature by the induction heating and cooling system. Many experiments were widely examined by using this system with controlling the rotation speed and the rotation time. The possibility for the rheoforming process was investigated with microstructural characteristics.

  • PDF

EFFECTS OF TITANIUM SURFACE COATING ON CERAMIC ADHESION (타이타늄 표면 코팅이 도재 결합에 미치는 영향)

  • Kim, Yeon-Mi;Kim, Hyun-Seung;Lee, Kwang-Min;Lee, Doh-Jae;Oh, Gye-Jeong;Lim, Hyun-Pil;Seo, Yoon-Jung;Park, Sang-Won
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.5
    • /
    • pp.601-610
    • /
    • 2007
  • Statement of problem: The adhesion between titanium and ceramic is less optimal than conventional metal-ceramic bonding, due to reaction layer form on cast titanium surface during porcelain firing. Purpose: This study characterized the effect of titanium-ceramic adhesion after gold and TiN coating on cast and wrought titanium substrates. Material and method: Six groups of ASTM grade II commercially pure titanium and cast titanium specimens$(13mm{\times}13mm{\times}1mm)$ were prepared(n=8). The conventional Au-Pd-In alloy served as the control. All specimens were sandblasted with $110{\mu}m\;Al_2O_3$ particles and ultrasonically cleaned for 5min in deionized water and dried in air before porcelain firing. An ultra-low-fusing dental porcelain (Vita Titankeramik) was fused on titanium surfaces. Porcelain was debonded by a biaxial flexure test at a cross head speed of 0.25mm/min. The excellent titanium-ceramic adherence was exhibited by the presence of a dentin porcelain layer on the specimen surface after the biaxial flexure test. Area fraction of adherent porcelain (AFAP) was determined by SEM/EDS. Numerical results were statistically analyzed by one-way ANOVA and Student-Newman-Keuls test at ${\alpha}=0.05$. Results: The AFAP value of cast titanium was greatest in the group 2 with TiN coating, followed by group 1 with Au coating and the group 3 with $Al_2O_3$ sandblasting. Significant statistical difference was found between the group 1, 2 and the group 3 (p<.05). The AFAP value of wrought titanium was greatest in the group 5 with TiN coating, followed by the group 4 with Au coating and the group 6 with $Al_2O_3$ sandblasting. Conclusion: No significant difference was observed among the three groups (p>.05). The AFAP values of the cast titanium and the wrought titanium were similar. However the group treated with $Al_2O_3$ sandblasting showed significantly lower value (p<.05).

Creep and Oxidation Behaviors of Alloy 617 in High Temperature Helium Environments with Various Oxygen Concentrations (산소 농도에 따른 Alloy 617의 고온헬륨환경에서의 크립 및 산화거동)

  • Koo, Jahyun;Kim, Daejong;Jang, Changheui
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.7 no.2
    • /
    • pp.34-41
    • /
    • 2011
  • Wrought nickel-base superalloys are being considered as the structural materials in very-high temperature gas-cooled reactors. To understand the effects of impurities, especially oxygen, in helium coolant on the mechanical properties of Alloy 617, creep tests were performed in high temperature flowing He environments with varying $O_2$ contents at 800, 900, and $1000^{\circ}C$. Also, creep life in static He was measured to simulate the pseudo-inert environment. Creep life was the longest in static He, while the shortest in flowing helium. In static He, impurities like $O_2$ and moisture were quickly consumed by oxidation in the early stage of creep test, which prevented further oxidation during creep test. Without oxidation, microstructural change detrimental to creep such as decarburization and internal oxidation were prevented, which resulted in longer creep life. On the other hand, in flowing He environment, surface oxides were not stable enough to act as diffusion barriers for oxidation. Therefore, extensive decarburization and internal oxidation under tensile load contributed to premature failure resulting in short creep life. Limited test in flowing He+200ppm $O_2$ resulted in even shorter creep life. The oxidation samples showed extensive spallation which resulted in severe decarburization and internal oxidation in those environments. Further test and analysis are underway to clarify the relationship between oxidation and creep resistance.

A Study on Microstructural Evolution of Hot Rolled AZ31 Magnesium Alloy Sheets (열간 압연한 AZ31 마그네슘합금 판재의 미세조직 발달에 관한 연구)

  • Kim S. H.;Yim C. D.;You B. S.;Seo Y. M.;Chung I. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.08a
    • /
    • pp.63-71
    • /
    • 2004
  • Recently, a sheet forming process of Mg alloys is highlighted again due to increasing demand for Mg wrought alloys in the applications of casings of mobile electronics and outer-skins of light-weight transportation. Microstructure control is essential for the enhancement of workability and formability of Mg alloy sheets. In this research, AZ31 Mg alloy sheets were prepared by hot rolling process and the rolling condition dependency of the microstructure and texture evolution was studied by employing a conventional rolling mill as well as an asymmetric rolling mill. When rolled through multiple passes with a small reduction per pass, fine-grained and homogeneous microstructure evolved by repetitive dynamic and static recrystallization. With higher rolling temperature, dynamic recrystallization was initiated in lower reduction. However with increasing reduction per pass, deformation was locallized in band-like regions, which provided favorable nucleation sites f3r dynamic recrystallization. Through post annealing process, the microstructures could be transformed to more equiaxed and homogeneous grain structures. Textures of the rolled sheets were characterized by $\{0002\}$ basal plane textures and retained even after post annealing. On the other hand, asymmetrically rolled and subsequently annealed sheets exhibited unique annealing texture, where $\{0002\}$ orientation was rotated to some extent to the rolling direction and its intensity was reduced.

  • PDF

Microstructure and Mechanical Properties of Pure Titanium Processed using Friction Stir Welding (순수 타이타늄의 기계적 특성에 미치는 마찰 교반 용접 공정 조건의 영향)

  • Lee, Y.J.;Choi, A.;Lee, S.J.;Fujii, Hidetoshi;Shin, S.E.;Lee, D.G.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.32 no.3
    • /
    • pp.124-130
    • /
    • 2019
  • Friction stir welding is one of the interesting welding methods for titanium and its alloy which proceeds with plastic flow due to thermo-mechanical stirring and friction heat. Solid-state welding can solve severe problems such as high-temperature oxidation, interstitial oxygen diffusion and grain coarsening by liquid-state welding. Dynamic recrystallization and grain refinement can vary significantly with the plunging load and rotational speed of tool during friction stir welding, and suitable process conditions must be optimized to obtain microstructure and better mechanical characteristics. Suitable FSW conditions were 1000 kg of plunging load and 200 rpm of rotational speed and it showed YS 270 MPa, UTS 332.1 MPa, and El 17.3%, which were very similar to those of wrought titanium sheet.

The Basic Study on Fatigue Crack Growth Behavior of SiC Whisker Reinforced Aluminium 6061 Composite Material (SiC 휘스커 보강 Al 6061 복합재료의 피로균열진전 특성에 관한 기초 연구)

  • 권재도;안정주;김상태
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.9
    • /
    • pp.2374-2385
    • /
    • 1994
  • SiCw/Al composite material is especially attractive because of their superior specific strength, specific stiffness, corrosion fatigue resistance, creep resistance, and wear resistance compared with the corresponding wrought Al alloy. In this study, Fatigue crack growth behavior and fatigue crack path morphology(FCPM) of SiC whisker reinforced Al 6061 alloy with 25% SiC volume fraction and Al 6061 allay were performed. Result of the fatigue crack growth test sgiwed that fatigue crack growth rate of SiCw/Al 6061 composite was slower than that of Al 6061 matrix therefore it was confirmed that Sic whisker have a excellent fatigue resistance. And Al 6061 matrix had only FCPM perpendicular to loading direction. On the other hand SiCw/Al 6061 composite had three types in fatigue crack path morphology. First type is that both sides FCPM of artificial notch are perpendicular to loading direction. Second type is that a FCPM in artifical notch has slant angle to loading direction and the other side FCPM is perpendicular to loading direction. Third type is that both sides FCPM of notch have slant angle to loading direction. It was considered that this kinds of phenomena were due to non-uniform distribution of SiC whisker and confirmed by SEM observation for fracture mechanism study.