• Title/Summary/Keyword: Woven wire wick

Search Result 5, Processing Time 0.021 seconds

Analysis of Woven Wire Wick Structure for a Miniature Heat Pipe (소형 히트파이프용 편조 윅의 형상 해석)

  • 이진성;김철주
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.1
    • /
    • pp.18-24
    • /
    • 2001
  • Woven wire wick is very effective structure because of its easiness to insert inside of pipe for a miniature heat pipe. The present study was conducted to investigate the effect of the effective flow passage with respect to wire helix angle. Also effective thermal conductivity were examined by defining mean porosity considering effective liquid flow passages. Effective heat transfer area is varied with respect to wire helix angle, and in the range of $\thet=60~65^{\circ}C$, heat transfer area is decreased about 15~20%. Permeability of woven wire wick shows similar value of 200 mesh screen wick. And comparison of experimental results on effective thermal conductivity shows a fairly good agreement with the analytical results.

  • PDF

An Analytical Model for Predicting the Effective Thermal Conductivity of Woven Wire Wick Structure

  • Lee, Jin-Sung;Kim, Chul-Ju
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.10 no.2
    • /
    • pp.72-78
    • /
    • 2002
  • Woven wire wick is a very effective structure because of its easiness to insert inside of pipe for a miniature heat pipe. The present study was conducted to predict the porosity and the effective thermal conductivity of liquid-saturated woven wire wick. The porosity and the effective thermal conductivity of the evaporator region indicate different values from those of the condenser region due to the existence of non-flow region. The minimum value of the effective thermal conductivity indicates on condition of the $\theta$=$45^{Wcirc}$ and the values of the effective thermal conductivity increases symmetrically centering around the minimum value. The values of the effective thermal conductivity in the evaporator region at the angle of $45^{Wcirc}$ indicate about 60~80% higher than those in the condenser region for various combinations of copper, and stainless with water and ethanol.

Application of Miniature Heat Pipe for Notebook PC Cooling (노트북 PC CPU 냉각용 소형 히트파이프 Packaging 연구)

  • Moon, Seok-Hwan;Hwang, Gunn;Choy, Tae-Goo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.6
    • /
    • pp.799-803
    • /
    • 2001
  • Miniature heat pipe(MHP) with woven-wired wick was used to cool the CPU of a notebook PC. The pipe with circular cross-section was pressed and bent for packaging the MHP into a notebook PC with very limited compact packaging space. A cross-sectional area of the pipe is reduced about 30% as the MHP with 4mm diameter is pressed to 2mm thickness. In the present study a performance test has been performed in order to review varying of operating performance according to pressed thickness variation and heat dissipation capacity of MHP cooling module that is packaged on a notebook PC. New wick type was considered for overcoming low heat transfer limit when MHP is pressed to thin-plate. The limiting thickness or pressing is shown to be within the range of 2mm∼2.5mm through the performance test with varying the pressing thickness. When the wall thickness of 0.4mm is reduced to 0.25mm for minimizing conductive thermal resistance through the wall of heat pipe, heat transfer limit and thermal resistance of MHP were improved about 10%. In the meantime, it is shown that the thermal resistance and heat transfer limit for the MHP with central wick type are higher than those of MHP with existing wick types. The results of performance test for MHP cooling modules with woven-wired wick to cool a notebook PC shows the stability as cooling system since T(sub)j(Temperature of Processor Junction) satisfy a demand condition of 0∼100$\^{C}$ under 11.5W of CPU heat.

Manufacturing and Operating Performance of the Heat Pipe with Sintered Wick (소결윅 히트파이프의 제작 및 작동성능)

  • Yun, Ho-Gyeong;Moon, Seok-Hwan;Ko, Sang-Choon;Hwang, Gunn;Choy, Tae-Goo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.9
    • /
    • pp.1260-1266
    • /
    • 2002
  • In this study, to make an excellent heat pipe, the manufacturing technology of a sintered wick was investigated. Making a sintered wick is known to be very difficult but it has many advantages. For example, the porosity and pore size can be controlled and the capillary force is great. The mixture of copper and pore former powder was used as a wick material and ceramic-coated stainless steel was used as a mandrel which is necessary for vapor flow. To analyze the feature of the manufactured wick, not only porosity and pore size were measured but also the sintered structure was observed. A heat pipe with sintered wick was manufactured and the performance test of the heat pipe was performed in order to review cooling performance. The performance test results for the 4mm diameter heat pipe with the sintered wick shows the stability since the temperature difference between a evaporator and a condenser of the heat pipe is less than 4.4$^{\circ}C$, and thermal resistance is less than 0.7$^{\circ}C$/W, In the meantime the composite wick that is composed with sintered and woven wire was also examined. The heat transfer limit of the heat pipe with composite wick was enhanced about 51%~60% compare to the one with sintered wick.

An Experimental Study of a Heat pipe with Binary Mixture Working Fluid for Solar Collector (2 성분 혼합물을 작동유체로 사용하는 태양열 집열기용 히트파이프의 실험적 연구)

  • Jung, Eui-Guk;Boo, Joon-Hong;Chung, Won-Bok
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.13-18
    • /
    • 2003
  • Heat pipes with binary mixture fabricated and tested for applications where condenser temperature is in a range of $10^{\circ}C$ to $130^{\circ}C$. The pipe materials 8.0 mm O.D. cupper tube and the working fluids are ethanol-water mixtures. The total length of test of the heat pipe was 1710mm in which evaporator section was 1570mm, adiabatic section was 50mm and condenser section was 90mm. Mixing ratios of ethanol and water could be variable in mole fraction. Temperature of condenser section was $10^{\circ}C$, $80^{\circ}C$ and $130^{\circ}C$. Heat pipe performance experimental study was accomplished with change of mixing ratio in these temperatures. The fill charge ratio was 20% of the heat pipe volume. Wick structure was woven-wire and method of experimental work was that thermal load was increased 20W step until the heat pipe wall temperature reached at $150^{\circ}C$. Results were following: At coolant $10^{\circ}C$ and $130^{\circ}C$, mixing ratio that have beat thermal performance was 0.8M+ and at coolant $80^{\circ}C$, was 0.3 ${\sim}$ 0.5 M+.

  • PDF