• Title/Summary/Keyword: Woven Carbon Fiber Reinforced Composite Materials

Search Result 33, Processing Time 0.02 seconds

Fatigue Damage Evaluation of Woven Carbon-Fiber-Reinforced Composite Materials by Using Fatigue Damage Model (피로 손상 모델을 이용한 직조 탄소섬유강화 복합재료의 피로 손상 평가)

  • Park, Hong-Sun;Choi, Jung-Hun;Koo, Jae-Mean;Seok, Chang-Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.6
    • /
    • pp.757-762
    • /
    • 2010
  • Owing to the high specific strength and stiffness of composite materials, they are extensively used in mechanical systems and in vehicle industries. However, most mechanical structures experience repeated load and fatigue. Therefore, it is important to perform fatigue analysis of fiber-reinforced composites. The properties of composite laminates vary depending upon the stacking sequence and stacking direction. Fatigue damage of composite laminates occurs according to the following sequence: matrix cracking, delamination, and fiber breakage. In this study, fatigue tests were performed for damage analysis. Fatigue damages, which have to be considered in fatigue analysis, are determined by using the stiffness values calculated from hysteresis loops, and the obtained fatigue damage curve is examined using Mao's equation and Abdelal's equation.

Development of 3D Woven Preform π-beam based on T-beam Made of Laminated Composites (적층복합재료 T-빔 기반의 3차원 직조 프리폼 π-빔 개발)

  • Park, Geon-Tae;Lee, Dong-Woo;Byun, Joon-hyung;Song, Jung-il
    • Composites Research
    • /
    • v.33 no.3
    • /
    • pp.115-124
    • /
    • 2020
  • Laminate composites, especially Carbon fiber-reinforced composites are wide used in various industry such as aerospace and automotive industry due to their high specific strength and specific stiffness. However, the laminate composites has a big disadvantage that delamination occurs because the arrangement of the fibers is all arranged in the in-plane direction, which limits the field of application of the laminate composites. In this study, we first developed a laminate composites T-beam in which π-beam and flat plate were combined and optimized the design parameters through structural analysis and mechanical tests. Afterwards, 3D weave preform T-beam was developed by applying the same design parameters of laminate composites T-beams, and improved mechanical strength was achieved compared to laminated structures. These findings are expected to be applicable to existing laminated composite structures that require increased strength.

Study on Mechanical Properties of CFRP Composite Orthogonal Grid Structure (CFRP 복합재료 직교 격자 구조의 기계적 특성 연구)

  • Baek, Sang Min;Lim, Sung June;Kim, Min Sung;Ko, Myung Gyun;Park, Chan Yik
    • Composites Research
    • /
    • v.31 no.2
    • /
    • pp.69-75
    • /
    • 2018
  • In this study, a grid panel structure in which the woven CFRP composites were stacked in the orthogonal array was proposed and the mechanical properties were analyzed and studied. The grid parts were fabricated by cutting prepregs and laminating them. The grid panel structure was fabricated by co-curing with lower laminate plate in auto-clave process. The behavior of the proposed grid panel structure was evaluated by tests under tensile, compressive, shear, and bending loads. The effect of increasing the stiffness of the orthogonal grid structure was verified through these tests. In addition, the finite element model was constructed and compared with the test results, confirming the validity and reliability of the test and analysis.