• Title/Summary/Keyword: Wound and Injuries

Search Result 233, Processing Time 0.021 seconds

Gait Analysis of a Pediatric-Patient with Femoral Nerve Injury : A Case Study (대퇴신경 손상 환아의 보행분석 : 사례연구)

  • Hwang, S.H.;Park, S.W.;Son, J.S.;Park, J.M.;Kwon, S.J.;Choi, I.S.;Kim, Y.H.
    • Journal of Biomedical Engineering Research
    • /
    • v.32 no.2
    • /
    • pp.165-176
    • /
    • 2011
  • The femoral nerve innervates the quadriceps muscles and its dermatome supplies anteromedial thigh and medial foot. Paralysis of the quadriceps muscles due to the injury of the femoral nerve results in disability of the knee joint extension and loss of sensory of the thigh. A child could walk independently even though he had injured his femoral nerve severely due to the penetrating wound in the medial thigh. We measured and analyzed his gait performance in order to find the mechanisms that enabled him to walk independently. The child was eleven-year-old boy and he could not extend his knee voluntarily at all during a month after the injury. His gait analysis was performed five times (GA1~GA5) for sixteen months. His temporal-spatial parameters were not significantly different after the GA2 or GA3 test, and significant asymmetry was not observed except the single support time in GA1 results. The Lower limb joint angles in affected side had large differences in GA1 compared with the normal normative patterns. There were little knee joint flexion and extension motion during the stance phase in GA1 The maximum ankle plantar/dorsi flexion angles and the maximum knee extension angles were different from the normal values in the sound side. Asymmetries of the joint angles were analyzed by using the peak values. Significant asymmetries were found in GA1with seven parameters (ankle: peak planter flexion angle in stance phase, range of motion; ROM, knee: peak flexion angles during both stance and swing phase, ROM, hip: peak extension angle, ROM) while only two parameters (maximum hip extension angle and ROM of hip joint) had significant differences in GA5. The mid-stance valleys were not observed in both right and left sides of vertical ground reaction force (GRF) in the GA1, GA2. The loading response peak was far larger than the terminal stance peak of vertical ground reaction curve in the affected side of the GA3, GA4, GA5. The measured joint moment curves of the GA1, GA2, GA3 had large deviations and all of kinetic results had differences with the normal patterns. EMG signals described an absence of the rectus femoris muscle activity in the GA1 and GA2 (affected side). The EMG signals were detected in the GA3 and GA4 but their patterns were not normal yet, then their normal patterns were detected in the GA5. Through these following gait analysis of a child who had selective injuries on the knee extensor muscles, we could verify the actual functions of the knee extensor muscles during gait, and we also could observe his recovery and asymmetry with quantitative data during his rehabilitation.

Comparative Analysis of Fracture Angulation between Parallel Pinning and Plate Fixation Techniques in the Management of 5th Metacarpal Fractures (제 5 수지 중수골 골절에서 평행 핀 또는 플레이트 고정술 이후 골절각 변화에 대한 비교 연구)

  • Lee, Myungchul;Shin, Hyojung;Choi, Hyungon;Kim, Jeenam;Shin, Donghyeok
    • Archives of Hand and Microsurgery
    • /
    • v.23 no.4
    • /
    • pp.230-238
    • /
    • 2018
  • Purpose: Metacarpal fractures are common injuries of the hand. They are treated using closed reduction (CR) or open reduction (OR) techniques. The management strategy depends on fracture site characteristic and fixation methods. In this study, we evaluated pre- and postoperative fracture angulation, when metacarpal fractures bad been treated using two different techniques: CR with parallel transverse pinning and OR with plate fixation. Methods: Forty-six patients undergoing anatomic reduction to treat extra-articular metacarpal fractures were recruited. They were included in one of two therapeutic groups: Group 1, CR with parallel transverse pinning (n=21); Group 2, OR with plate fixation (n=25). Fracture angulation values have been measured on pre- and postoperative radiologic images. Values were compared between pre- and postoperative states, and between corresponding measurements of each group. Results: All extra-articular metacarpal fractures were successfully treated without wound related complications or the limit of joint motion. Both groups demonstrated adequate reduction at immediate postoperative period (postoperative angulation of group 1, $20^{\circ}{\pm}7^{\circ}$; group 2, $19^{\circ}{\pm}5^{\circ}$). During the observation at follow-up period, Group 1 exhibited slight recurrence (follow-up angulation of group 1, $24^{\circ}{\pm}10^{\circ}$). Nonetheless, Group 2 showed adequate reduction state in both immediate postoperative and long-term follow-up periods (follow-up angulation of group 2, $18^{\circ}{\pm}6^{\circ}$). Conclusion: Extra-articular metacarpal fractures were successfully restored without functional complications. CR with parallel transverse pinning method exhibited recurrence after pin removal, which necessitates cautious postoperative exercise and monitoring.

A Comparative Study on the Effective Deep Learning for Fingerprint Recognition with Scar and Wrinkle (상처와 주름이 있는 지문 판별에 효율적인 심층 학습 비교연구)

  • Kim, JunSeob;Rim, BeanBonyka;Sung, Nak-Jun;Hong, Min
    • Journal of Internet Computing and Services
    • /
    • v.21 no.4
    • /
    • pp.17-23
    • /
    • 2020
  • Biometric information indicating measurement items related to human characteristics has attracted great attention as security technology with high reliability since there is no fear of theft or loss. Among these biometric information, fingerprints are mainly used in fields such as identity verification and identification. If there is a problem such as a wound, wrinkle, or moisture that is difficult to authenticate to the fingerprint image when identifying the identity, the fingerprint expert can identify the problem with the fingerprint directly through the preprocessing step, and apply the image processing algorithm appropriate to the problem. Solve the problem. In this case, by implementing artificial intelligence software that distinguishes fingerprint images with cuts and wrinkles on the fingerprint, it is easy to check whether there are cuts or wrinkles, and by selecting an appropriate algorithm, the fingerprint image can be easily improved. In this study, we developed a total of 17,080 fingerprint databases by acquiring all finger prints of 1,010 students from the Royal University of Cambodia, 600 Sokoto open data sets, and 98 Korean students. In order to determine if there are any injuries or wrinkles in the built database, criteria were established, and the data were validated by experts. The training and test datasets consisted of Cambodian data and Sokoto data, and the ratio was set to 8: 2. The data of 98 Korean students were set up as a validation data set. Using the constructed data set, five CNN-based architectures such as Classic CNN, AlexNet, VGG-16, Resnet50, and Yolo v3 were implemented. A study was conducted to find the model that performed best on the readings. Among the five architectures, ResNet50 showed the best performance with 81.51%.