• Title/Summary/Keyword: Worn wear

Search Result 606, Processing Time 0.029 seconds

Wear Properties of the Alumina Short Fiber Reinforced Tin-Bronze Matrix Composites manufactured by Hot Pressing (가압소결법으로 제조된 알루미나 단섬유 보강 청동기지 복합재의 마모특성)

  • Choi, Jun-Ho;Huh, Moo-Young
    • Transactions of Materials Processing
    • /
    • v.4 no.4
    • /
    • pp.398-409
    • /
    • 1995
  • The wear properties of the alumina short fiber reinforced tin-bronze matrix composites manufactured by hot pressing was studied at the room temperature and $350^{\circ}C.$ The wear loss of various specimens having different constituent and different density was examined by a pin-on-disc type wear testing machine. The results were discussed by the observation of the worn surface morphology and the analysis of the composition on the worn surfaces. Since the reinforced effect of the alumina fiber on the wear resistance was dependent on the strength of alloy matrix, the pressureless sintered composites having a lower matrix strength showed a marked increase in wear resistance by the fiber reinforcement. As the wear condition became severe, the fiber reinforcement was more effective. The delamination on the wear surface was observed in the pressureless sintered specimens having pores which are related to the initiation and the propagation of cracks. However, the wear mechanism acting on a big failure area was not found on the wear surfaces of the hot pressed specimens having a few pores.

  • PDF

Sliding Wear Mechanism of Ultra-Fine Grained Low Carbon Dual Phase Steel as n Function of Applied Load (결정립 미세화에 따른 이상조직 탄소강의 하중에 따른 마멸 기구)

  • Yu, H.S.;Yi, S.K.;Shin, D.H.;Kim, Y.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.421-424
    • /
    • 2007
  • Dry sliding wear behavior of ultra-fine grained (UFG) plain low carbon dual phase steel, of which microstructure consists of hard martensite in a ductile ferrite matrix, has been investigated. The wear characteristics of the UFG dual phase steel was compared with that of a coarse grained dual phase steel under various applied load conditions. Dry sliding wear test were carried out using a pin-on-disk type tester at various loads of 1N to 100N under a constant sliding speed condition of 0.20m/s against an AISI 52100 bearing steel ball at room temperature. The sliding distance was fixed as 1000m for all wear tests. The wear rate was calculated by dividing the weight loss, measured to the accuracy of 10-5g by the specific gravity and sliding distance. The worn surfaces and wear debris were analyzed by SEM, EDS and profilometer. Micro-vickers hardness of the cross section of worn surfaces were conducted to analyze strain hardening underneath the contact surfaces. The wear mechanism of the UFG dual phase steel was investigated with emphasis on the unstable nature of the grain boundaries of the UFG microstructure.

  • PDF

Sliding Wear Mechanism of Ultra-Fine Grained Low Carbon Dual Phase Steel as a Function of Applied Load (경정립 미세화에 따른 이상조직 탄소강의 하중에 따른 마멸기구)

  • Yu, H.S.;Yi, S.K.;Shin, D.H.;Kim, Y.S.
    • Transactions of Materials Processing
    • /
    • v.16 no.4 s.94
    • /
    • pp.299-303
    • /
    • 2007
  • Dry sliding wear behavior of ultra-fine grained(UFG) plain low carbon dual phase steel, of which microstructure consists of hard martensite in a ductile ferrite matrix, has been investigated. The wear characteristics of the UFG dual phase steel was compared with that of a coarse grained dual phase steel under various applied load conditions. Dry sliding wear test were carried out using a pin-on-disk type tester at various loads of 1N to 100N under a constant sliding speed condition of 0.20m/s against an AISI 52100 bearing steel ball at room temperature. The sliding distance was fixed as 1000m for all wear tests. The wear rate was calculated by dividing the weight loss, measured to the accuracy of 10-5g by the specific gravity and sliding distance. The worn surfaces and wear debris were analyzed by SEM, EDS and profilometer. Micro-vickers hardness of the cross section of worn surfaces were conducted to analyze strain hardening underneath the contact surfaces. The wear mechanism of the UFG dual phase steel was investigated with emphasis on the unstable nature of the grain boundaries of the UFG microstructure.

Tribological Characteristics with Purity Zirconia of Compression Ring Materials in Piston (피스톤 압축 링 재료의 지르코니아 순도에 따른 트라이볼로지 특성)

  • Oh, Seong-Mo
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.5
    • /
    • pp.91-96
    • /
    • 2006
  • The friction and wear properties of ceramics are very important in the applications to engineering ceramic parts such as seal rings, pump parts, automobile meter parts, and so on. In this study, the effects of each other purity on the mechanical and tribological properties of purity zirconia ceramics were investigated. Also in order to determine the effects of sliding distance, sliding speed, contact load, friction coefficient, the amount of worn out material at a certain time, and the prepared composites were measured. Crystalline phases and microstructure were examined with XRD and SEM. The results show that we obtained the good properties of friction coefficient and wear resistance at the purity 99.5% of zirconia. than this of the purity 95% were great at the wear amount of worn out material.

Friction and Wear Behavior of Coating and Surface Treated Steel for Low Velocity High Pressure Application (코팅 및 표면 처리된 강의 고하중 영역에서의 마모 마찰 특성)

  • Lim, Dong-Phill;Shim, Dong-Seob;Kim, Sang-Beom
    • Tribology and Lubricants
    • /
    • v.24 no.6
    • /
    • pp.386-392
    • /
    • 2008
  • Friction and wear behavior of hard coated and surface treated steel with candidate processing methods for low velocity high pressure application investigated. Wear tests were carried out under specific region considering the operation condition of construction equipments under lubricated and unlubricated condition. Different tribological behavior analyzed with comparing the wear rate of counter part, morphology and topography of worn surface and the worn volume of samples and counter parts.

A Study on the End Mill Wear Detection by the Pattern Recognition Method in the Machine Vision (머신비젼으로 패턴 인식기법에 의한 엔드밀 마모 검출에 관한 연구)

  • 이창희;조택동
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.4
    • /
    • pp.223-229
    • /
    • 2003
  • Tool wear monitoring is an important technique in the flexible manufacturing system. This paper studies the end mill wear detection using CCD camera and pattern recognition method. When the end mill working in the machining center, the bottom edge of the end mill geometry change, this information is used. The CCD camera grab the new and worn tool geometry and the area of the tool geometry was compared. In this result, when the values of the subtract worn tool from new tool end in 200 pixels, it decides the tool life. This paper proposed the new method of the end mill wear detection.

The Fretting Wear Characteristics of Zircaloy-4 Tube at High Temperature (고온하에서 지르칼로이-4 튜브의 프레팅 마멸 특성)

  • 백승철;김태형;김석삼
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.06a
    • /
    • pp.89-95
    • /
    • 2001
  • The fretting wear characteristics of Zircaloy-4 tube at room and high temperature were Investigated experimentally. In this study, the number of cycles, slip amplitude and temperature were selected as main factors of fretting wear. The results of this research showed that the wear volume Increased with the Increase of slip amplitudes and the number of cycles but decreased with temperature and the coefficient of friction were observed different tendency between room and high temperature. According to SEM(EDS) only gross slip were observed on the surface of both specimens and compacted oxide were on worn surfaces. XRO patterns showed that the crystallization of ZrO$_2$ were observed on the worn surface at high temperature. The fretting wear were Investigated due to oxidation and accumulation of plastic flow.

  • PDF

Crater Wear Volume Calculation and Analysis (크레이터 마모의 체적계산 및 분석법)

  • Jeong, Jin-Seok;Cho, Hee-Geun;Yoon, Moon-Chul
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.18 no.3
    • /
    • pp.248-254
    • /
    • 2009
  • The worn crater wear geometry of coated tools after machining has been configured by using Confocal Laser Scanning Microscopy(CLSM) and the Wavelet-based filtering technique. The CLSM can be well suited to construct the three-dimensional crater wear on the rake surfaces of coated tips. However, The raw heightness data of HEI(height encoded image) acquired by CLSM must be filtered due to the electronic and imaging noise occurring in constructing the crater image. So the Wavelet-based filtering algorithm is necessary to denoise the shape features in a micro scales so as to realize accurate crater wear topography analysis. The crater wear patterns filtered enable us to predict the crater wear shape in order to study the tool wear evolution. The study shows that the technique by combining the CLSM and Wavelet-based filtering is an excellent one to obtain the geometries of worn tool rake surfaces over a wide range of surface resolution in a micro scale.

  • PDF

Dry sliding wear behavior of plain low carbon dual phase steel by strain hardening and oxidation (가공경화와 산화층 형성에 의한 이상조직 저탄소강의 건식 미끄럼 마멸 거동)

  • Yu, H.S.;Kim, Y.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.149-152
    • /
    • 2006
  • Dry sliding wear behavior of low carbon dual phase steel, of which microstructure consists of hard martensite in a ductile ferrite matrix, has been investigated. The wear characteristics of the dual phase steel was compared with that of a plain carbon steel which was normalized at $950^{\circ}C$ for 30min and then air-cooled. Dry sliding wear tests were carried out using a pin-on-disk type tester at various loads of 1N to 10N under a constant sliding speed condition of 0.2m/sec against an AISI 52100 bearing steel ball at room temperature. The sliding distance was fixed as 1000m for all wear tests. The wear rate was calculated by dividing the weight loss measured to the accuracy of $10^{-5}g$ by the specific gravity and sliding distance. The worn surfaces and wear debris were analyzed by SEM, EDS and a profilomter. Micro vickers hardness values of the cross section of worn surface were measured to analyze strain hardening behavior underneath the wearing surfaces. The were rate of the dual phase steel was lower than the plain carbon steel. Oxidation on the sliding surface and strain hardening were attributed for the higher wear resistance of the dual phase steel.

  • PDF

Tribological characteristics of silicon nitride on elevated temperature (고온하에서 질화규소의 트라이볼로지적 특성)

  • 김대중;채영훈;김석삼
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.84-93
    • /
    • 1999
  • Sliding friction and wear tests for silicon nitride(Si$_3$N$_4$) was carried out with a ball-on-disk specimen configuration. The material used in this study was HIPed silicon nitride. The tests was carried out from room temperature to 1000"I with self mated couples of slicon nitride in laboratory air. Worn surfaces were observed by SEM and debris particles from worn surfaces were analyzed degree of oxidation by XPS. XPS.

  • PDF