• Title/Summary/Keyword: Workpiece Materials

Search Result 284, Processing Time 0.021 seconds

Quantitative Evaluation of Scratch Related Tool Life for Stamping of UHSS Using Pin-on-Flat Surface Test (Pin-on-Flat Surface Test를 이용한 초고장력강판 스탬핑 금형의 정량적 스크래치 수명평가)

  • Choi, H.S.;Kim, S.G.;Kim, B.M.;Ko, D.C.
    • Transactions of Materials Processing
    • /
    • v.22 no.2
    • /
    • pp.86-92
    • /
    • 2013
  • When stamping ultra-high-strength steel (UHSS), the phenomenon of galling, which corresponds to a transfer of material from the sheet to the tool surface, occurs because of the high contact pressure between tool and workpiece. Galling leads to increased friction, unstable interface conditions, scratches on the sheet and the tool surfaces and, eventually, premature tool surface failures. Therefore, a simple and accurate evaluation method for tool scratching is necessary for the selection of tool material and coating, as well as for a better optimization of process conditions such as blank holder force and die radius. In this study, the pin-on-disc (PODT) and pin-on-flat surface (POFST) tests are conducted to quantitatively evaluate scratch-related tool life for stamping of UHSS. The variation of the friction coefficient is used as an indicator of scratch resulted from galling. The U-channel ironing test (UCIT) is performed in order to validate the results of the friction tests. This study shows that the POFST test provides a good quantitative estimation of tool life based on the occurrence of scratch.

A study on the Grinding Ability Evaluation of Grinding Wheel made in Korea and Japan (한, 일산 연삭 숫돌의 연삭 성능 평가에 관한 연구)

  • 강재훈
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.5 no.1
    • /
    • pp.51-57
    • /
    • 1996
  • Although the system for establishing grinding operation standards mainly depends on the simulation method, it is desirable to obtain highly reliable grinding data and to develop experimental technology, And, it also needs to modify the simulation models if the simulation results do not coincide with special situation due to the difference of grinding machine, wheels and workpiece materials. If simple tests are carried out to evaluate these specificity, the reliability and utility of the system can be raised higher. Therefore, it is required for evaluating wheel ability and confirming the validity of the experimental methods as well as the possibility of exchanging the experimental data between Korea and Japan to preform several kinds of grinding experiments. In this paper, experiments of cylindrical plunge grinding were conducted using the wheels of the same specification made by three typical grinding wheel manufacturers both in Korea and Japan, respectively. The grinding power consumption grinding force, the ground surface roughness, and wheel wear were measured under the same dressing the grinding conditions. The average value and standard deviation of the experiment results were calculated to compared the grinding performance of the wheels made in both countries. The experiment results show that the grinding wheel performance of Korea's is nearly equal to that of Japan's for general purpose of grinding operation. In conclusion, it is possible to exchange the experimental data between Korea and japan.

  • PDF

Detection of Tool Wear using Cutting Force Measurement in Turning (선사가공에 절삭력을 이용한 공구마멸의 감지)

  • 윤재웅;이권용;이수철;최종근
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.1
    • /
    • pp.1-9
    • /
    • 2001
  • The development of flexible automation in the manufacturing industry is concerned with production activities performed by unmanned machining system A major topic relevant to metal-cutting operations is monitoring toll wear, which affects process efficiency and product quality, and implementing automatic toll replacements. In this paper, the measurement of the cutting force components has been found to provide a method for an in-process detection of tool wear. The static com-ponents of cutting force have been used to detect flank wear. To eliminate the influence of variations in cutting conditions, tools, and workpiece materials, the force modeling is performed for various cutting conditions. The normalized force dis-parities are defined in this paper, and the relationships between normalized disparity and flank were are established. Final-ly, artificial neural network is used to learn these relationships and detect tool wear. According to proposed method, the static force components could provide the effective means to detect flank wear for varying cutting conditions in turning operation.

  • PDF

Chip Shape Control using AE Signal in Pure Copper Turning (순동선삭가공에서 AE 신호를 이용한 칩 형상 제어)

  • Oh, Jeong Kyu;Kim, Pyeong Ho;Koo, Joon Young;Kim, Duck Whan;Kim, Jeong Suk
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.4
    • /
    • pp.330-336
    • /
    • 2014
  • The continuous chip generated in cutting process deteriorates workpiece, tool, and machine tool system. It is necessary to treat this continuous chip in ductile material machining condition for stable cutting. This paper deals with the chip control method using acoustic emission(AE) signal in pure copper turning operation. AE raw signals, root mean square(RMS) signals and wavelet transformed signals measured in turning process are introduced to analysis for chip patterns. With analysis of AE signals, it is obtained that the produced chip patterns are correlated with the specified AE signals which are transformed by fuzzy pattern algorithm. By this experimental investigation, the chip patterns can be classified at significant level in pure copper machining process and controlled from continuous chips to reduced-length stable chips.

The characteristic of strength weld according to patterns of weld bead on $CO_2$ laser welding ($CO_2$ 레이저 용접시 비드패턴에 따른 용접강도 특성)

  • Kim, T.I.;Song, Y.C.;Lee, M.Y.;Nam, K.W.
    • Laser Solutions
    • /
    • v.11 no.1
    • /
    • pp.32-35
    • /
    • 2008
  • In the remote welding system using $CO_2$ laser, laser beam can be rapidly transferred to a workpiece by moving mirrors of scanner system. So, it makes reducing the cycle time of welding process. We can also use and apply various patterns of weld beads by linear controlled mirrors. But most of the domestic car makers have usually applied use stitch-shaped weld bead. In that case, we don't have the merit of remote welding system efficiently. Therefore, in this paper, we investigated the characteristic of weld strength according to patterns of weld bead on $CO_2$ laser welding. And we also studied the relationship between shape of weld bead and value of tensile load.

  • PDF

Properties of ELID Mirror-Surface Grinding for Single Crystal Sapphire Optics (단결정 사파이어 광학소자의 ELID 경면연삭 가공 특성)

  • Kwak, Jae-Seob;Kim, Geon-Hee;Lee, Yong-Chul;Ohmori, Hitoshi;Kwak, Tae-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.3
    • /
    • pp.247-252
    • /
    • 2012
  • This study has been focused on application of ELID mirror-surface grinding technology for manufacturing single crystal optic sapphire. Single crystal sapphire is a superior material with optic properties of high performance as light transmission, thermal conductivity, hardness and so on. Mirror-surface machining technology is necessary to use sapphire as optic parts. The ELID grinding system has been set up for machining of the sapphire material. According to the ELID experimental results, it shows that the surface of sapphire can be eliminated by metal bonded wheel with micron abrasives and the surface roughness of 60nmRa can be gotten using grinding wheel of 2,000 mesh in 4.5um, depth of cut. In this study, the chemical experiments after ELID grinding also has been conducted to check chemical reaction between workpiece and grinding wheel on ELID grinding process. It shows that the chemical reaction has not happened as the results of the chemical experiments.

Parameter Characterization for Underwater Laser forming of SUS430/Cu/SUS430 Laminated Composite Layer (수중 레이저 굽힘시 SUS430/Cu/SUS430 복합판재 성형 특성 분석)

  • Park, S.H.;Oh, I.Y.;Han, S.W.;Woo, Y.Y.;Hwang, T.W.;Seyedkashi, S.M.H.;Moon, Y.H.
    • Transactions of Materials Processing
    • /
    • v.26 no.1
    • /
    • pp.35-40
    • /
    • 2017
  • Laser forming is an advanced process in sheet metal forming in which thermal stress originated from the laser heat source is used to shape the metal sheet. However, substantial waiting time is normally necessary for the workpiece to cool down between consecutive scans so that a steep temperature gradient can be reestablished in the next scan. In order to solve this drawback, laser bending characteristics are experimentally implemented in underwater condition. Laser forming effects under various conditions, including different laser power, scanning velocity, beam diameter, number of passes and material, are investigated. The results show that the underwater laser forming facilitates deliberate forming. The bending angle per respective laser scan is decreased with increasing the number of passes and scanning velocity.

Statistical analysis and modelization of tool life and vibration in dry face milling of AISI 52100 STEEL in annealed and hardened conditions

  • Benghersallah, Mohieddine;Medjber, Ali;Zahaf, Mohamed Zakaria;Tibakh, Idriss;Amirat, Abdelaziz
    • Advances in materials Research
    • /
    • v.9 no.3
    • /
    • pp.189-202
    • /
    • 2020
  • The objective of the present work is to investigate the effect of cutting parameters (Vc, fz and ap) on tool life and the level of vibrations velocity in the machined part during face milling operation of hardened AISI 52100 steel. Dry-face milling has been achieved in the annealed (28 HRc) and quenched (55 HRc) conditions using multi-layer coating micro-grain carbide inserts. Statistical analysis based on the Response surface methodology (RSM) and ANOVA analysis have been conducted through a plan of experiments methodology using a reduced Taguchi table (L9) in order to obtain engineering models for tool life and vibration velocity in the workpiece for both heat treatment conditions. The results show that the cutting speed has a dominant influence on tool life for both soft and hard part. Cutting speed and feed per tooth is the most significant parameters for vibration levels. Comparing the experimental values with those predicted by the developed engineering models of tool life and levels of vibrations velocity, a good correlation has been obtained (between 97% and 99%) in annealed and hard conditions.

A Study on the Energy Saving Type Pneumatic System Characteristics (에너지 절약형 공기압 시스템 특성에 관한 연구)

  • Kim, Hyeong-Ui;Kim, Dong-Su;Gang, Bo-Sik;Seong, Baek-Ju
    • 연구논문집
    • /
    • s.25
    • /
    • pp.91-98
    • /
    • 1995
  • Recently, improving the energy efficiency of a pneumatic system and reducing the consumption of compressed air were a concern of scholars at domestic and abroad. The using fields of a pneumatic system are widely used in factory automation of manufacturing line, chemical factories with explosiveness danger and petroleum industries etc. In particular, pneumatic cylinder is applied to feeding work of workpiece. jig tools and press mechanism, reciprocation and rotary motion with rack and pinion. In this study, the experimental apparatus consisted to pneumatic cylinder, dual supply pressure regulator and solenoid valve. The dual supply pressure regulator connected to outlet port of solenoid valve. The supply pressure($4.5kg_f/cm^2$) of compressed air goes into the rodless chamber 1 to drive the piston rod forward which is named working stage. The supply pressure ($2kg_f/cm^2$) of compressed air goes into the rod chamber 2 to drive the piston rod backward which is named no-working stage. Accordingly, the research results of this study can be obtained to Energy-Saving Effects of the compressed air about 35%.

  • PDF

Surface Transformation Hardening for Rod-shaped Carbon Steels by High Power Diode Laser (고출력 다이오드 레이저(HPDL)를 이용한 탄소강 환봉의 표면변태경화)

  • Kim, Jong-Do;Kil, Byung-Lea;Kang, Woon-Ju
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.8
    • /
    • pp.961-969
    • /
    • 2007
  • The laser material processing has replaced a conventional material processing such as a welding, cutting, drilling and surface modification and so on. LTH(Laser Transformation Hardening) is one branch of the laser surface modification process. A lot of energy is needed for the LTH process to elevate workpiece surface to temperature of the austenite transformation($A_3$), which results from utilizing a beam with a larger size and lower power intensity comparatively. The absorptivity of the laser energy with respect to material depends on the wave length of a beam. This study is related to the surface hardening for the rod-shaped carbon steel by the high power diode laser(HPDL) whose beam absorptivity is better than conventional types of lasers such as $CO_2$ or Nd:YAG laser. Because a beam proceeds on the rotating specimen the pretreated hardened-phase can be tempered and softened by the overlapping between hardened tracks. Accordingly, the longitudinal hardness measurement and observation of the micro structure was carried out for an assessment of the hardening characteristics. In addition, a hardening characteristics as a hardenability of materials was compared in the point of view of the hardness distribution and hardening depth and width.