• Title/Summary/Keyword: Workpiece Materials

Search Result 284, Processing Time 0.025 seconds

An Analysis of Cold Foging at Final State Using Rigid-Plastic FEM (강소성 유한요소법을 이용한 냉간단조 공정의 최종단계 해석)

  • Choi, Y.;Jung, S.Y.;Kim, B.M.;Choi, J.C.
    • Transactions of Materials Processing
    • /
    • v.8 no.1
    • /
    • pp.108-115
    • /
    • 1999
  • In this paper, the analysis of cold forging in final state has been performed by using rigid-plastic FEM. For the analysis, the geometry and flow stress of the workpiece are required. One method to obtain the geometry is measurement of that made from experimet. To evaluate the flow stress, average effective strain is calculated from the load-stroke diagram by using energy method. The numerical test performed to show the validity of propose method. The analysis of PFIR, the precision forging of spurgear with inside relif, is performed.

  • PDF

Cutting Characteristics of Quartz by Abrasive Waterjet (연마제 워터 제트에 의한 쿼츠의 절단특성)

  • Jin, Yun-Ho;Chung, Nam-Yong;Kim, Kyung-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.922-927
    • /
    • 2004
  • Abrasive waterjet (AWJ) cutting is an emerging technology for precision cutting of difficult-to-machining materials with the distinct advantages of no thermal effect, high machinability, high flexibility and small cutting forces. This paper investigated theoretical and experimental cutting characteristics associated with abrasive waterjet cutting of quartz GE214. It is shown that the proper variations of several cutting parameters such as waterjet pressure, cutting speed and cutting depth improve the roughness on workpiece surfaces produced by AWJ cutting. From the experimental results by AWJ cutting of quartz GE214, the optimal cutting conditions to improve the surface roughness were proposed and discussed.

  • PDF

Machining Characteristics Elevation by Micro-structure Improvement of Aluminum Alloy (알루미늄 합금의 미세조직 개선에 의한 절삭 가공 특성 향상)

  • 채왕석;김경우;최현민;김동현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.290-295
    • /
    • 2002
  • This research has been carried out to experiment machining characteristics by elements addition and subtraction of AC8B and sample that is used fur car piston materials. 1.Mechanical properties of development sample expressed unique mechanical properties than AC8B. 2. Cutting resistance of development sample decreased about 10% than AC8B according to increase of the cutting speed. 3. According to increase of the feedrate, all comparison workpiece found that specific cutting resistance decrease. 4. It was found that sample's machining characteristics that is developed by addition and subtraction of elements improves.

  • PDF

Influence of Abrasive Water-Jet on Workpiece Geometry (Abrasive Water-Jet이 가공물의 형상에 미치는 영향)

  • 장현석;하만경;류인일;곽재섭;이상진;이기백
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.585-590
    • /
    • 2002
  • Abrasive water-jet(AWJ) machining is a new cutting technology. The AWJ can cut various materials touch as metal, glass and stone. However, the AWJ machining makes troubles including kerf, rounding and side taper. In this study, we investigated the correlation between parameters of abrasive water-jet machining arid cutting characteristics. The machining parameter were the material thickness and the traverse speed. The experiment was conducted to cut the stainless steel(STS41) and the mild steel(SS41) specimens. The results of the experiment weirs presented as the relation between cutting conditions and trouble of a dimension error, a conner error, an uncut width and a kerf.

  • PDF

A Study on the Effects of Cutting Resistance and Surface Roughness of the Machine Structure Carbon Steel in Turning (선삭에서 기계구조용 탄소강의 가공시 절삭저항과 표면거칠기에 미치는 영향에 관한 연구)

  • 이건준
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.5
    • /
    • pp.47-53
    • /
    • 1999
  • The purpose of this study was to determine the effects of various cutting condition on the cutting resistance and surface roughness of material in turning operation using a coated carbide tool. The workpiece materials were the carbon steel SM20C and SM45C The results of this study are summarized as follows: The cutting force decreases as the feedee amount and the cutting depth decrease and the cutting speed increases. In order to obtain a proper surface roughness to each material it is desirable to set the feeding amount as 0.059mm.rev, the cutting depth as 0.4mm and the cutting speed as 270m/min for SM20C, while setting the feeding as 0.059mm/rev the cutting depth as 0.6mm and the cutting speed as 270m/min for SM45C.

  • PDF

A Study on machining characteristics of the Electropolishing of Aluminum alloy (알루미늄 합금의 전해연마 가공특성에 관한 연구)

  • 이은상;김창근
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.2
    • /
    • pp.17-22
    • /
    • 2003
  • Electropolishing is the electrolytic removal of metal in a highly ionic solution by means of an electrical potential and current. It is normally used to remove a very thin layer of material on the surface of a metal part or component. Electropolishing is able to enhance the material properties of a workpiece and to change its physical dimensions. Also, It is suitable for the polishing of both complex shapes and hardened materials, which are difficult to machine mechanically. therefore, the aim of the present study is to investigate the characteristic of Electropolishing A12024 in terms of current density, polishing time and electrode gap, etc.

Effects of Traverse Speed on Dimensional Error in Abrasive Water-Jet (입자 워터 젯의 이송속도가 공작물의 치수정밀도에 미치는 영향)

  • 곽재섭;하만경
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.3
    • /
    • pp.1-7
    • /
    • 2004
  • Abrasive water-jet(AWJ) machining can cut various materials such as metal, glass and plastics. However, the AWJ machining has some troubles including kerf, rounding and side taper. In this study, we experimently investigated the correlation between the traverse speed of the abrasive water-jet and the dimensional error of the workpiece according to the thickness and the types of the material. The specimen was the stainless steel and the mild steel and the predetermined contour cutting was conducted. A comer radius error, an uncut width and a kerf were measured and evaluated.

A Study on the Effects of Cutting Resistance and Surface Roughness in Turning (선삭가공에서 절삭지향과 표면거칠기에 미치는 영향에 관한 연구)

  • 신근하
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1997.10a
    • /
    • pp.235-242
    • /
    • 1997
  • The purpose of this study was to determine the effects of various cutting conditions on the cutting resistance and surface roughness of material in turning operation using a carbide tool. The workpiece materials were the carbon steel SM20C and SM45C. The results of this study are summarized as follows: The cutting force decreases as the feeding amount and cutting depth decrease and the cutting speed increases. In order to obtain a proper surface roughness to each material, it is desirable to set the feeding amount as 0.059mm/rev, the cutting depth as 0.4mm and the cutting speed as 270m/min for SM20C, while setting the feeding as 0.059mm/rev, the cutting depth as 0.6mm and the cutting speed as 270m/min for SM45C.

  • PDF

A Study on the Plasma Hot Machining to Improve the Machinability of Inconel 718 (Inconel 718 의 절삭성 개선을 위한 플라즈마 고온 절삭 가공법에 관한 연구)

  • 김진남
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.4 no.3
    • /
    • pp.67-76
    • /
    • 1995
  • An experimental study of hot machining has performed to improve the machinability of Inconel718. This experiment used plasma are for heating materials and Whisker0reinforce aluminum oxide ceramic tool insert. An assembled plasma heating system are described and experimental results from both conventional and plasma hot machining of Inconel 718 are compared. The experiments with plasma heating demonstrated the following effectiveness. 1)The cutting force was reduced with increasing surface temperature of workpiece from 450$^{\circ}C$ up to 720$^{\circ}C$ as much as approximately from 20 to 40%. 2) Surface roughness(Ra) was improved by as much as a factor 2 in case of one pass cutting with new ceramic tool inserts.3) The depth of cut notch were at promary cutting tool was significantly reduced.

  • PDF

AFM based Surface Verifications of Pulse Electrochemical Polishing for Various Frequency Conditions (주파수 변화에 따른 AFM 기반의 펄스 전기화학 폴리싱 표면특성 분석)

  • Kim, Young-Bin;Kim, Jong-Tye;Ahn, Dong-Gyu;Park, Jong-Rak;Jeong, Sang-Hwa;Park, Jeong-Woo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.2
    • /
    • pp.246-251
    • /
    • 2012
  • Pulse electrochemical polishing process has been used to improve mechanical properties such as surface roughness and corrosion resistance on conductive metallic materials. In addition, pulse electrochemical polishing process with various frequency may produce a lustrous, smoother, deburred and cleaned surface on workpiece. The aim of this paper is to study surface characteristics of pulse electrochemical polishing for various frequency conditions using AFM to verify localized surface variation in nanometer scale.