• Title/Summary/Keyword: Workpiece

Search Result 1,346, Processing Time 0.028 seconds

Application of the Laser Vision Sensor for Corrugated Type Workpiece

  • Lee, Ji-Hyoung;Kim, Jae-Gwon;Kim, Jeom-Gu;Park, In-Wan;Kim, Hyung-Shik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.499-503
    • /
    • 2004
  • This application-oriented paper describes an automated welding carriage system to weld a thin corrugated workpiece with welding seam tracking function. Hyundai Heavy Industries Corporation has developed an automatic welding carriage system, which utilizes pulsed plasma arc welding process for corrugated sheets. It can obtain high speed welding more than 2 times faster than traditional TIG based welding system. The aim of this development is to increase the productivity by using automatic plasma welding carriage systems, to track weld seam line using vision sensor automatically, and finally to provide a convenience to operator in order to carry out welding. In this paper a robust image processing and a distance based tracking algorithms are introduced for corrugated workpiece welding. The automatic welding carriage system is controlled by the programmable logic controller(PLC), and the automatic welding seam tracking system is controlled by the industrial personal computer(IPC) equipped with embedded OS. The system was tested at actual workpiece to show the feasibility and performance of proposed algorithm and to confirm the reliability of developed controller.

  • PDF

Influnce of Cutting Pressure on Laser Cut Quality (Pressure Distribution of Cutting Gas) (레이저 절단품질에 미치는 절단압력의 영향 (1) (절단가스의 압력분포))

  • Yang, Yeong-Su;Na, Seok-Ju;Koo, Hyeong-Mo;Kim, Tae-Gyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.4 no.4
    • /
    • pp.84-92
    • /
    • 1987
  • To investigate the influence of the cutting pressure on the laser cutting quality, an expermental facility was constructed which can measure the cutting pressure distribution for various cutting conditions. Flow visualization was performed using the Schlieren photography and the pressure acting on the workpiece surface was measured, corresponding to the important process variables such as the kind of assist gas, nozzle pressure, distance between the nozzle exit and the workpiece surface, and the presence of the secondary nozzle. The cutting pressure acting on the workpiece was largely influenced by the nozzle pressure and nozzle-workpiece distance. The secondary nozzle which is used to raise the effective working pressure had its obvious role only when the angle between it and the main nozzle was small and when the distance between the nozzle exit and the workpiece surface was large.

  • PDF

자유곡면 볼엔드 밀링공정에서 CUSP PATTERN 조정

  • 심충건;양민양
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.106-110
    • /
    • 2001
  • The ball-end milling process is widely used in the die/mold industries, and it is very suitable for the machining of free-form surfaces. However, this process is inherently inefficient process to compared with the end-milling or face milling process, since it relays upon the machining at the cutter/surface contact point. The machined part is the result of continuous point-to-point machining on the free-form surface. And cusps (or scallops) remain at the machined part along the cutter paths and they give the geometrical roughness of the workpiece. Thus, for the good geometrical roughness of the workpiece, it is required very tightly spaced cutter paths in this ball-endmilling process. However, with the tight cutter paths, the geometrical roughness of the workpiece is not regular on the workpiece since the cusp height is variable in the previously developed ISO-parametric or Cartesian machining methods. This paper suggests a method of tool path generation which makes the geometrical roughness of workpiece be constant through the machined surface. In this method, Ferguson Surface design Model is used and cusp height is derived from the instantaneous curvatures. And, to have constant cusp height, an increment of parameter u or v is estimated along the reference cutter path. In ball-end milling experiments, the cusp pattern was examined, and it was proved that the geometrical roughness could be regular by suggested tool path generation method.

Prediction Model of the Exit Cross Sectional Shape of Workpiece in Round-Oval-Round Pass Rolling

  • Lee, Youngseog;Kim, Byung-Min;Kim, Dong-Hwan
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.6
    • /
    • pp.785-798
    • /
    • 2002
  • A reliable analytic model that predicts the surface profile of the exit cross section of workpiece in round-oval (or oval-round) pass sequence is established. The presented model does not require any plasticity theory but needs the only geometric information on workpiece and roll groove. Formulation is based on the linear interpolation of the radius of curvature of an incoming workpiece and that of roll groove in the roll axis direction when the maximum spread of workpiece is known beforehand. The validity of the analytic model is examined by hot rod rolling experiment with the roll gap, specimen size, design parameter of oval groove and steel grade changed. Results revealed that the cross sectional shapes predicted by the model were in good agreement with those obtained experimentally. We found that the analytic model not only has simplicity and accuracy for practical usage but also saves a large amount of computational time in comparison with finite element method.

Design and Fabrication of an Automatic Alignment and Loading System for Workpieces (공작물 적재를 위한 자동정렬 및 적재장치의 설계 및 제작)

  • Lee, Jae-Kyung;Choi, Myung-Chul;Kim, Gab-Soon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.3
    • /
    • pp.134-140
    • /
    • 2018
  • This paper describes the design and fabrication of an automatic alignment and loading system for workpieces. To move a workpiece to a chucking position of a machine tool using a gantry robot, an automatic aligning device is required to load the workpiece before machining and automatically align them. The automatic alignment system was conceptually designed, and the structural analysis was performed for the main parts such as the top plate, center support, front and back support, and support shaft. Based on the structural analysis results, the size of these structures was determined. The automatic alignment system was manufactured, and the vertical movement characteristics of the workpiece up-and-down movement device and the rotation characteristics of the workpiece rotation device were experimentally examined. The result has confirmed that they operate normally.

A Study on the Cooling Effects of Mist in the Grinding (연삭 가공시 Mist의 냉각효과에 관한 연구)

  • 이석우;최헌종;김대중
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.918-921
    • /
    • 2001
  • In grinding process, the heat of $1200^{\circ}$~$1500^{\circ}$ on the grinding area between grinding wheel and workpiece is generated. It decreases the surface integrity of workpiece and causes the thermal damages such as the deformed layer, residual stress and grinding burn. Generally coolant is widely used for preventing the heat generation on the grinding area, but it deteriorates the working condition by polluting the atmosphere of workplace and in the end pollutes the environment. The grinding methods using the compressed cold air and mist are the cooling methods to substitute conventional coolant. They can decrease the environmental pollution through not using coolant any more or minimizing it. In this study, the cooling effects of grinding methods using the compressed cold air and mist have been investigated. The grinding system equipped with the water bathe and mist spray nozzle was developed. The energy partition to workpiece through measuring the temperature on the workpiece surface was calculated. The surface integrity of workpiece and thermal damage like the deformed layer were analyzed.

  • PDF

Fabrication of Micro Structure Using Electro Discharge Deposition (Electro Discharge Deposition (EDD)을 이용한 미세 구조물 제작)

  • 오석훈;민병권;박성준;이상조
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1865-1868
    • /
    • 2003
  • This paper provides a new method for hybrid machining, particularly suited to micro fabrication applications such as micro point, micro line, micro structure, micro partition and so on. Developed micro fabrication process by electrical discharge machining (EDM) and electrical discharge deposition (EDD) with metal powder (Ti, Fe) has been studied to build TiC or FeC structure. Titanium powder or iron powder is supplied from working fluid (kerosene or de-ionized water with powder) and adheres on a workpiece by the heat and electric power caused by the electrical discharge. The use of a tool electrode is expected to keep powder concentration high in the gap between a workpiece and a tool electrode and to accrete powder material on the workpiece. The deposition is tried under various electrical conditions (workpiece. tool electrode, working fluid, discharge current, voltage and powder etc.). On the other hand. using electrical discharge machining (EDM) with the same tool electrode, it can be used as a removal process (cutting) by electro erosion at the same time. Therefore. this new method can do a hybrid machining to build up and down a structure with the workpiece.

  • PDF

Study on Grinding Force and Ground Surface of Ferrite (페라이트의 연삭저항 및 연삭면 특성)

  • 김성청
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.6 no.3
    • /
    • pp.17-25
    • /
    • 1997
  • This paper aims to clarify the effects of grinding conditions on the grinding force, ground surface and chipping size of workpiece in surface grinding of various ferrites with the resin bond diamond wheel. The main conclusions obtained were as follows: In a constant peripheral wheel speed, the specific grinding energy is fitted by straight lines with grinding depth coefficient($\delta$) in a logarithmic graph. The effect of both depth of cut and workpiece speed on grinding energy becomes larger in the order of Mn-Zn, Cu-Ni-Zn and Sr. When using the diamond grain of the lower toughness, the roughness of the ground surface becomes lower. The ground surfaces show that the fracture process during grinding becomes more brittle in the order of Sr, Mn-Zn and Cu-Ni-Zn. The chipping size at the corner of workpiece in grinding increases with the the increases of the depth of cut and workpiece speed, and the decrease of peripheral wheel speed. The effect of both depth of cut and workpiece speed on chipping size becomes more larger in the order of Sr, Mn-Zn and Cu-Ni-Zn.

  • PDF

Study on the curving phenomenon of rectangular shaped product in extrusion process (사각형 단면을 가진 제품의 압출가공시 제품의 굽힘현상에 관한 연구)

  • 진인태;최재찬
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1996.10a
    • /
    • pp.7-13
    • /
    • 1996
  • The kinematically admissible velocity field is developed for the analysis of extruded products. The curving of product in extrusion is caused by the linearly distributed longitudinal velocity on the cross-section of the workpiece at the die exit. In the analysis, the longitudinal velocity in extrusion direction is divided into the uniform velocity and the deviated velocity. In order to satisfy the requrement of the kinematically admissible velocity field, the average value of the deviated velocity should be zero. At the same time, it should linearly change with the distance form the center of gravity of the cross-section of the workpiece. The results of the analysis show that the curvature of product increses with increses in eccentricity of gravity center of the cross-section of workpiece at die entrance form that of the cross-section at the die exit. In the analysis, the longitudinal velocity in extrusion direction is divided into the uniform velocity and the deviated velocity. In order to satisfy the requrement of the kinematically admissible velocity field, the average value of the deviated velocity should be zero. At the same time, it should linearly change with the distance from the center of gravity of the cross-section of the workpiece. The results of the analysis show that the curvature of product increses with increses in ecentricity of gravity center of the cross-section of workpiece at die entrance from that of the cross-section at the die exit.

  • PDF

In-process Topographical Evaluation of CBN wheel surface

  • Lee, Joosang;Kim, Heenam;Minsung Hong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.06a
    • /
    • pp.507-513
    • /
    • 1998
  • In surface grinding, the conditions of the grinding wheel has much more significant effect on the machined workpiece as compared to other metal removal processes. The contact between the grinding wheel and the workpiece introduce heat and resistance, which restrict the self-dressing of the grits and result in burrs cracks on the workpiece. Therefore, before or during the grinding operation, it is necessary to self-dressing the grinding wheel for more accurate performance. In general, however, the choice of the dressing time has made by the operator's own decision or the condition of the workpiece. In this paper, a new method for finding the optimal dressing time of the grinding wheel is proposed. In order to develop a more sophisticated methodology, a non-contacting in-process optical measurement method using a laser beam has been introduced to find the glazing, loading, and spilling of the grinding wheel Simultaneously, a three-dimensional computer simulation of the grinding operation has been attempted based on the contact mechanism between the grinding wheel and the workpiece. The grains of the grinding wheel are simulated and the optimal dressing time is determined based on the amount of grain wear and work surface roughness.

  • PDF