• Title/Summary/Keyword: Working process analysis

Search Result 929, Processing Time 0.032 seconds

A Numerical Analysis on Flow Characteristic in a Standard Cyclone Dust Separator (표준 사이클론 집진기 내 유동특성에 관한 수치해석)

  • Lee, Chi-Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.5
    • /
    • pp.97-103
    • /
    • 2011
  • This study is numerical analysis on flow characteristic in a standard cyclone dust separator. The cyclone dust separator is widely used in a industrial applications as a method for dust removed from gases. In cyclone chamber, a very complex flow field is formed, involving the interaction between highly swirling velocity and turbulent field. Numerical analysis with computational fluid dynamics(CFD) was carried out to investigate the working fluid that flow into cyclone dust separator. Helical entry type was increasing flow rate compared with tangent entry type. And according to increasing pressure difference was increased fan power. But, helical entry type was high performance dust separator, in comparison with tangent entry type.

Work Time of Basement Composite Wall Form Assembly by Work Time Analysis (작업분석을 통한 합벽거푸집 구성 요소별 작업소요시간에 관한 연구)

  • Heo, Kyoung-Moo;Kim, Myoung-Hyun;Kim, Tae-Hui;Kim, Jae-Yeob;Kim, Gwang-Hee
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2009.11a
    • /
    • pp.9-13
    • /
    • 2009
  • Recently, construction in downtown is often done closely at the adjacent building. In this case, underground construction need to Basement Composite Wall(BCW) construction. However, generally, during the construction process of BCW form works have many problems that are narrow working space and inefficient time consuming. Despite of these problems, there was no quantitative research for the work time of BCM assembly. Therefore, in this study, work time of CBW form assembly in underground construction is identified by the work analysis. The results of this study reveal that buttress work of basement form take lots of time in the entire work process of Basement Composite Wall form assembly.

  • PDF

Development of Web-based Virtual System to Simulate Forging Operation (Web 기반형 단조 가공 가상 생산 시스템 개발)

  • Lee, Young-Seok;Hwang, Ho-Jin;Park, Man-Jin;O, Jae-U;Jang, Dong-Young;Kim, Ji-Pyo;Na, Kyung-Hoan
    • IE interfaces
    • /
    • v.14 no.1
    • /
    • pp.1-8
    • /
    • 2001
  • This paper presented a web-based virtual system to simulate forging operation. The system utilized simulation techniques of Finite Element Method (FEM) to analyze the forging process and Virtual Reality Modeling Language (VRML) to visualize the simulation results in the web. The analysis using FEM could show mechanical information such as stresses and deformation profiles of a specimen during forging process and the analysis results were transferred into virtual space using VRML. Since the forging machine and specimen were modeled using Java and VRML, the forging machine and analysis results were browsed and integrated on the web that is interfaced to users through EAI to show the whole forging simulation. The developed system realized the working environment virtually so that education and experiment could be performed effectively even on the PC.

  • PDF

Friction Welding Process Analysis of Piston Rod in Marine Diesel Engine and Mechanical Properties of Welded Joint (선박 디젤 엔진용 피스톤 로드의 마찰용접 공정해석 용접부 기계적 특성)

  • Jeong, H.S.;Son, C.W.;Oh, J.S.;Choi, S.K.;Cho, J.R.
    • Transactions of Materials Processing
    • /
    • v.20 no.3
    • /
    • pp.236-242
    • /
    • 2011
  • The two objectives of this study were, first, to determine the optimal friction welding process parameters using finite element simulations and, second, to evaluate the mechanical properties of the friction welded zone for large piston rods in marine diesel engines. Since the diameters of the rod and its connecting part are very different, the manufacturing costs using friction welding are reduced compared to those using the forging process of a single piece. Modeling is a generally accepted method to significantly reduce the number of experimental trials needed when determining the optimal parameters. Therefore, because friction welding depends on many process parameters such as axial force, initial rotational speed and energy, amount of upset and working time, finite element simulations were performed. Then, friction welding experiments were carried out with the optimal process parameter conditions resulting from the simulations. The base material used in this investigation was AISI 4140 with a rod outer diameter of 280 mm and an inner diameter of 160 mm. In this study, various investigation methods, including microstructure characterization, hardness measurements and tensile and fatigue testing, were conducted in order to evaluate the mechanical properties of the friction welded zone.

A Study on Stucture of CAD / CAPP System in th e Heading Process Using Rigid-Plastic Finite Element Analysis (강소성 유한 요소법을 이용한 냉간 2단 헤딩가공에 있어서 CAD / CAPP 시스템의 구축에 대한 연구 1))

  • 신영우
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.30 no.1
    • /
    • pp.53-63
    • /
    • 1994
  • The conventional cold-heading process for the production of a bolt-shaped product is composed of some process and two or three blows heading. The strength of a bolt-shaped product produced by multi-blow heading depends on the working conditions of the heading process such as preforming die angle, corner-radius of the necked portion of product, and the reduction in height during pre-forming. Arigid-plastic finite-element program(RDHPSC) has been coded and the program testified by comparison with the results of experimentation. A method of testing the optimum die-conditions in the double-blow heading process by use of RDHPSC analysis is discussed a fundamental structures of CAD/CAPP system for two-blow heading process is discussed.

  • PDF

Thermo-mechanical stress analysis of feed-water valves in nuclear power plants

  • Li, Wen-qing;Zhao, Lei;Yue, Yang;Wu, Jia-yi;Jin, Zhi-jiang;Qian, Jin-yuan
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.849-859
    • /
    • 2022
  • Feed-water valves (FWVs) are used to regulate the flow rate of water entering steam generators, which are very important devices in nuclear power plants. Due to the working environment of relatively high pressure and temperature, there is strength failure problem of valve body in some cases. Based on the thermo-fluid-solid coupling model, the valve body stress of the feed-water valve in the opening process is investigated. The flow field characteristics inside the valve and temperature change of the valve body with time are studied. The stress analysis of the valve body is carried out considering mechanical stress and thermal stress comprehensively. The results show that the area with relatively high-velocity area moves gradually from the bottom of the cross section to the top of the cross section with the increase of the opening degree. The whole valve body reaches the same temperature of 250 ℃ at the time of 1894 s. The maximum stress of the valve body meets the design requirements by stress assessment. This work can be referred for the design of FWVs and other similar valves.

Adiabatic Analysis of 1180MPa Advanced High Strength Steel by Impact Weight (충격하중에 의한 1180MPa급 초고강도강의 단열해석)

  • Kim, Kun-Woo;Lee, Jae-Wook;Yang, Min-Seok;Lee, Seong-Yeop;Kim, Da-Hye;Lee, Jae-Jin;Mun, Ji-Hoon;Park, Ji-Won
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.8
    • /
    • pp.93-98
    • /
    • 2022
  • Adiabatic blanking is a method to improve productivity through an autocatalytic cycle that occurs repeatedly through plastic deformation and thermal softening caused by impact energy. In this study, an axisymmetric analysis model comprising a punch, die, holder, and specimen was developed to confirm the temperature and deformation characteristics caused by an impact load. Through this, the impact energy, diameter of the punch, gap between the punch and die, and the effect of the fillet were analyzed. Because this process occurs in a very short time, adiabatic analysis can be performed using the explicit time-integration method. The analysis, confirmed that it is necessary to design a structure capable of increasing the local temperature and plastic deformation by controlling the impact energy, working area, gap, and the fillet.

Evaluation of Postural Load during Liquid Weight Measurement Process Using Ratio of Exposure Time

  • Lee, Sung-Koon;Park, Peom
    • Journal of the Ergonomics Society of Korea
    • /
    • v.31 no.3
    • /
    • pp.445-453
    • /
    • 2012
  • The aim of this paper was to prove that if the risk level in combined tasks was improved through evaluation of postural load of liquid weight measurement process, the workload level and ratio of exposure time would be changed, and the time of process would be seen concurrently. Background: According to results of epidemiological studies conducted by Korea Occupational Safety & Health Agency, 122 musculoskeletal disorders occurred during 1992 to 2008, in which manufacturing industry covers 96(78.7%) of total. However, this is an insufficient level and only occupies 39% based on the South Korea's manufacturing standard industrial classification(246 industries). Method: Firstly, the number of batches weighed on one day(460min) was investigated based on the work performed and Weight measured weekly. VCR recording was taken based on the level of liquid ingredients prescribed for 1batch using the Camcorder. After dividing a 356 sec video into 1 sec using the screen capture function in Gom player, the job classification was performed by analyzing the change of working postures, which revealed 148 working postures. Time measurement was decided by time of the postures was being maintained. Then, the REBA analysis was performed for the working postures. The ratio of Exposure time was calculated based on the measurement time and REBA Score. In addition, the recommendations were designed and implementation was carried out for the working postures with REBA Score higher than 3. Finally, after the intervention, REBA measurement, time measurement, and ratio of exposure time were calculated for the comparison of works before and after improvement. Results: The number of work elements was decreased by 30.4% from 148 to 103 after improvement. The results of time measurement showed that the time was reduced by 46.3% from 356 sec to 191 sec. And the ratio of exposure time was also improved by 52.1% from 0% to 52.1% after improvement. Conclusion: The reduction of time was found to improve the productivity of management. Furthermore, because the reduction of ratio of exposure time and the improvement of workload level are the improvement of discomfort, it would contribute to the improvement of the worker's psychological working posture. Application: These results would contribute to musculoskeletal disease prevention and management performance. Further studies for other industries would be needed based on this case study.

A Study of the Ergonomics Evaluation of a Water Heater's Case Manufacturing Factory

  • Hsu, Yao-Wen;Chung, Yi-Chan;Chiu, Chung-Ching;Chen, Ching-Piao;Tsai, Chih-Hung
    • International Journal of Quality Innovation
    • /
    • v.9 no.1
    • /
    • pp.22-40
    • /
    • 2008
  • Unnatural working postures usually cause musculoskeletal problems for workers in work field, especially in traditional industry. Many analysis and survey methodologies have been developed to identify unnatural postures and disorder risks in workplaces. The Ovako Working Posture Analyzing System (OWAS) and Nordic Musculoskeletal Questionnaire (NMQ) are the representative methods and applied widely. This study applied the both tools to investigate the work field of a manufacturing factory of the water heater's case. We divided the manufacturing process into nine workshops, took the pictures of working motions by DV camera and analyzed the postures on OWAS. From the OW AS results, we could identify the risks level of musculoskeletal symptoms as four Action Categories (AC). And from the comparison of OWAS and NMQ results, we could provide the suggestions to improve the working methods and environment. From the results of OWAS, we found that the operators' head/neck and back were above AC3 in some workshops. If the situation continued in long period, the operators might have the risk to get musculoskeletal symptoms. From the investigation of NMQ, we also found that the percentage of aches on neck, shoulders and lower back were higher than other parts of body. The correlation between aches and jobs was more than 75%. So we provided some suggestions to improve: work rotation and adjustment of work surface/height to fit in with Ergonomics. Then the risks of musculoskeletal symptoms would be reduced.

Influence of NCG Charging Mass on the Heat Transport Capacity of Variable Conductance Heat Pipe (불응축가스량이 가변전열 히트파이프의 열수송 특성에 미치는 영향)

  • Suh Jeong-Se;Park Young-Sik;Chung Kyung-Taek
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.4
    • /
    • pp.320-327
    • /
    • 2006
  • Numerical analysis and experimental study are performed to investigate the effect of heat load and operating temperature on the thermal performance of several variable conductance heat pipe (VCHP) with screen meshed wick. The heat pipe is designed in 200 screen meshes, 500 mm length and 12.7 mm outer diameter tube of copper, water (4.8 g) is used as working fluid and nitrogen as non-condensible gas (NCG). Heat pipe used in this study has evaporator, condenser and adiabatic section, respectively. Analysis values and experimental data of wall temperature distribution along axial length are presented for heat transport capacity, condenser cooling water temperature change, degrees of an inclination angle and operating temperature. These analysis and experiment give the follow findings: For the same charging mass of working fluid, the operating temperature of heat pipe becomes to be high with the increasing of charging mass of NCG. When the heat flux at the evaporator section increases, the vapor pressure in the pipe rises and consequently compresses the NCG to the condenser end part and increases the active length of the condenser. From previous process, it is found out we can control the operating temperature effectively and also the analysis and experimental results are relatively coincided well.