• 제목/요약/키워드: Working fluid ratio

검색결과 176건 처리시간 0.022초

수직 동심 환형관 내부유동에서 과냉 유체의 비등 시작 열유속에 관한 표면 볼록 곡률의 영향 (Effect of Convex Surface Curvature on the Onset of Nucleate Boiling of Subcooled Fluid Flow in Vertical Concentric Annuli)

  • 변정환;이승홍
    • 대한기계학회논문집B
    • /
    • 제26권11호
    • /
    • pp.1513-1520
    • /
    • 2002
  • Effect of Convex Surface Curvature on the Onset of Nucleate Boiling of Subcooled Fluid Flow in Vertical Concentric Annuli An experimental study has been carried out to investigate the effect of the transverse convex surface curvature of core tubes on heat transfer in concentric annular tubes. Water is used as the working fluid. Three annuli having a different radius of the inner cores, Ri=3.18mm, 6.35mm, and 12.70mm with a fixed ratio of Ri/Ro=0.5 are used over a range of the Reynolds number between about 40,000 and 80,000. The inner cores are made of smooth stainless steel tubes and heated electrically to provide constant heat fluxes throughout the whole length of each test section. Experimental result shows that heat flux values on the onset of nucleate boiling of the smaller inner diameter model is much higher than that of the larger size test model.

휴대용 컴퓨터내의 이상유동 냉각시스템을 이용한 모사칩의 열성능에 관한 연구 (A Study on Thermal Performance of Simulated Chip using a Two Phase Cooling System in a Laptop Computer)

  • 박상희;최성대
    • 한국기계가공학회지
    • /
    • 제10권3호
    • /
    • pp.53-59
    • /
    • 2011
  • In this study, a two-phase closed loop cooling system is desinged and tested for a laptop computer using a FC-72. The cooling system is characterized by a parametric study which determines the effects of existence of a boiling enhancement microstructure, initial system pressure, volume fill ratio of coolant and inclination angle of condenser on the thermal performance of the closed loop. Experimental data show the optium condition when the volume ratio of working fluid is 70%, the pump flowing is 6ml/min, and the inclination angle of condenser is $0^{\circ}$. This research shows the maximum values which can dissipate 33W of chip power with a chip temperature maintained at $95^{\circ}C$.

압력 평형식 온도조절 밸브 성능 향상을 위한 연구 (A Study on the Performance Improvement of Pressure Compensating Temperature Control Valve)

  • 김태안;김윤제
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.671-674
    • /
    • 2002
  • Pressure compensating temperature control valve(TCV) is one of the important control devices, which is used to maintain the constant temperature of working fluid in power and chemical plants. The ratio of cylinder hole diameters of inlet and outlet is the main design parameters of TCV. So this needs to be investigated to improve the function of control of temperature and void fraction. In this study, numerical analysis is carried out with various ratios of cylinder hole diameters of the inlet and outlet in the TCV. Especial1y, the distribution of the static pressure Is investigated to calculate the new coefficient($C_{\upsilon}$) and resistance coefficient(K). The governing equations are derived from making using of three-dimensional Naver-Stokes equations with standard $k-{\varepsilon}$ turbulence model and SIMPLE algorithm. Using a commercial code, PHOENICS, pressure and flow fields in TCV are calculated with different inlet and outlet diameters of the cylinder hole for cold and hot water passages.

  • PDF

직사각형 휜이 부착된 관외착빙형 빙축열조에서 응고과정시 열전달 특성에 관한 연구 (An experimental study on heat transfer characteristics in the ice storage system of ice-on-coil type with rectangular finned tube during freezing process)

  • 권혁용;고재윤;정백영;임장순
    • 태양에너지
    • /
    • 제20권4호
    • /
    • pp.61-67
    • /
    • 2000
  • The purpose of this study is to improve heat transfer by attaching rectangular fins to tube. Experiments were carried out under the following conditions - Aspect ratio$(W_f/R_f)$ is 0.7, 1.2 and 1.8. Temperature conversion between high and low positions of water in the thermal storage appeared because maximum density point of water is about $4^{\circ}C$ and inlet direction of working fluid influenced conductive heat transfer Compared with the unfinned tube(bare tube), the rectangular tube increased the ice thermal storage energy and the ice thermal storage energy was increased as aspect ratio was increased.

  • PDF

확산형 흡수식 냉동기용 기포펌프의 운전특성에 관한 연구 (Operating Characteristics of a Bubble Pump for Diffusion-Absorption Refrigerator)

  • 이현경;김선창;이재헌
    • 설비공학논문집
    • /
    • 제13권9호
    • /
    • pp.878-887
    • /
    • 2001
  • Experimental investigation has been carried out to examine the operating characteristics of a bubble pump for diffusion absorption refrigerator. The effects of heat input and delivery height on generation rate of refrigerant vapor and circulation rate of solution have been investigated. as a result heat input and delivery height increase, circulation rate of solution increases. And the smaller the tube diameter, the larger the circulation rate of solution. Pumping ratio increases to a critical point and then decrease with the increase of heat input, and it increases with the increase in delivery height. In this paper, Marcus's analytical theory was also examined. It was found that the Marcus\`s analytical theory of a bubble pump was not appropriate for a bubble pump using ammonia aqueous solution as a working fluid.

  • PDF

수직원통형 빙축열조내 외향용융과정시 열전달특성에 관한 연구 -작동유체의 유동방향 및 축열조 형상비에 따른 열성능 비교- (A study on the heat transfer characteristics during outward melting process of ice in a vertical cylinder)

  • 김동환;김동춘;김일경;김영기;임장순
    • 설비공학논문집
    • /
    • 제9권2호
    • /
    • pp.171-179
    • /
    • 1997
  • During the day time in summer, peak of air conditing load, and electric power management system lies under overloaded condition. The reason is the enlarged peak load value of electric power caused by increased air-cooling load in summer. To prevent load concentration during day time and overloaded condition of power management system, some energy storage methods are suggested. One of these methods is ice storage system. Water has some good properties as P.C.M.(Phase Chang Material) : Its melting point is the range of required operation temperature. It has large specific latent heat and is chemically stable compared to other organic or inorganic substances. It is cheap and easy to treat. This study represents experimental results of heat transfer characteristics of P.C.M. under the outward melting process in a vertical cylinder. We experimented with twelve combinations of conditions, i.e., three different inlet temperatures($7^{\circ}C,\;4^{\circ}C\;and\;1^{\circ}C$), two working fluid directions(upward and downward), and two aspect ratios, H/R(4 and 2). At the inlet temperature of $7^{\circ}C$ and $4^{\circ}C$, there was temperature stagnation region where the temperature of P.C.M. remains constant at $4^{\circ}C$ regardless of aspect ratio and direction of working fluid. This temperature stagnation occurs as the water, at its maximum density, flows down to the lower region. The phase change interface formed bell-shaped curve as the melting process continued. With a new set of conditions(4H/R, inlet temperature $4^{\circ}C$ and $1^{\circ}C$, downward/upwerd inlet direction), the movement of phase change interface was faster when the working flued inlet direction was downward. With the same set of conditions, melting rate and total melting energy were larger when the working fluid inlet direction was downward. The results were reversed when the other sets of conditions were applied.

  • PDF

내부회전실린더를 가진 동심환형관에서 반경비의 영향에 관한 수치해석적 연구 (Numerical Analysis on Effects of Radius Ratio in a Concentric Annulus with a Rotating Inner Cylinder)

  • 배강열;김형범;이상혁
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2006년 제4회 한국유체공학학술대회 논문집
    • /
    • pp.327-330
    • /
    • 2006
  • This paper represents the numerical analysis on effects of radius ratio in a concentric annulus with a rotating inner cylinder. The numerical model consisted of two cylinder which inner cylinder is rotating and outer cylinder is fix, and the axial direction is used the cyclic condition because of the length for axial direction is assumed infinite. The diameter of inner cylinder is assumed 86.8mm, the numerical parameters are angular velocity and radius ratio. Also, the whole walls of numerical model have no-slip and the working fluid is used water at $20^{\circ}C$. The numerical analysis is assumed the transient state to observe the flow variations by time and the 3-D cylindrical coordinate system. The calculation grid adopted a non-constant grid for dense arrangement near the wall side of cylinder, the standard $k-{\omega}$ high Reynolds number model to consider the effect of turbulence flow and wall, the fully implicit method for time term and the quick scheme for momentum equation. The numerical method is compared with the experimental results by Wereley and Lueptow, and the results are very good agreement. As the results, TVF isn't appeared when Re is small because of the initial flow instability is disappear by effect of the centrifugal force and viscosity. The vortex size is from 0.8 to 1.1 for TVF at various $\eta$, and the traveling distance for wavy vortex have the critical traveling distance for each case.

  • PDF

액체-증기 이젝터의 성능에 관한 실험적 연구 (An Experimental Study on the Performance of a Liquid-Vapor Ejector with Water)

  • 박대웅;정시영
    • 설비공학논문집
    • /
    • 제12권4호
    • /
    • pp.345-353
    • /
    • 2000
  • In this study, the performance of five ejectors has been investigated with working fluids of water and water vapor. The diameters of nozzle and mixing tube of five ejectors were 1 and 1.5(ejector A), 1 and 2(ejector B), 1 and 2.5(ejector C), 1 and 3(ejector D), 2 and 4(ejector E) in millimeters. The length of the mixing tube was 8-10 times of its diameter. For each ejector, the ratio of mass flow rate of ejected water to that of entrained water vapor, $\mu$, was evaluated in terms of evaporator pressure, mass flow rate of ejected water, and water temperature. It was found that the performance of an ejector was not stable when the ratio of diameters was too small or too large(ejector A and D) and $\mu$ was almost the same for two ejectors with the same diameter ratio(ejector B and E). It was also found that $\mu$ increased almost linearly with an increase of evaporator pressure and the ratio $\mu$ increased as water temperature decreased. As expected, $\mu$ converged to zero as the water temperature approached the evaporator temperature. Finally, a non-dimensional correlation has been developed to predict$\mu$ terms of evaporator pressure and saturation pressure of ejected water.

  • PDF

가변 제어형 식용 풋옥수수 수확기 설계 및 성능평가 (Design and Performance Evaluation of a Variable Control Type Fresh Corn Harvester)

  • 우제근;최일수;김영근;최용;최덕규;이호섭;김지태;박영준;김재동
    • 드라이브 ㆍ 컨트롤
    • /
    • 제20권2호
    • /
    • pp.40-46
    • /
    • 2023
  • Fresh corn, one of the main food crops, must be harvested by hand. A harvest mechanization technology is required. In this study, a tractor-attached harvester was designed and manufactured to sequentially perform stem reaping, fresh corn detaching, and collecting. The(harvester was designed so that the main device could operate through a hydraulic pump and a generator could be operated through the tractor's PTO. Factor tests were conducted according to cultivars (Ilmichal, Super sweet corn) and working speed (0.12 m/s, 0.17, 0.22). After the factor test, detached corns ratio, collected corns ratio, and damaged corns ratio were analyzed and harvest performance was evaluated. Harvesting performance was good for super sweet corn. Considering operation efficiency, 0.22 m/s was judged to be an appropriate working speed. It was found that it took two hours to work an area of 10 a.

Simulation of $H_2O/LiBr$ Triple Effect Absorption Systems with a Modified Reverse Flow

  • Jo, Young-Kyong;Kim, Jin-Kyeong;Kang, Yang-Tae
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제15권3호
    • /
    • pp.114-121
    • /
    • 2007
  • In this study, a modified reverse flow type, one of the triple effect absorption cycles, is studied for performance improvement. The cycle simulation is carried out by using EES(Engineering Equation Solver) program for the working fluid of $H_2O/LiBr$ solution. The split-ratios of solution flow rate, UA of each component, pumping mass flow rate of solution are considered as key parameters. The results show that the optimal SRH (split ratio of high side) and SRL (split ratio of low side) values are 0.596 and 0.521, respectively. Under these conditions, the COP is maximized to 2.1. The optimal pumping mass flow rate is selected as 3 kg/s and the corresponding UAEV A is 121 kW/K in the present system. The present simulation results are compared to the other literature results from Kaita's (2002) and Cho's (1998) triple effect absorption systems. The present system has a lower solution temperature and a higher COP than the Kaita's modified reverse flow, and it also gives a higher COP than the Cho's parallel flow by adjusting split ratios.