• Title/Summary/Keyword: Working Temperature

Search Result 1,482, Processing Time 0.036 seconds

Impact of Korean Workers' Experience of Exposure to the Physical Work Factors on Absence

  • Choi, Seo-Yeon;Lee, Seong-Jin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.6
    • /
    • pp.149-156
    • /
    • 2017
  • In this paper, we propose to enhance a Physical working conditions to decrease absence from work. we demonstrated the correlation of worker's absence with various environmental factors in workplace by surveying 6,962 workers. As result, first, concerning exposure to physical work factors, most of them complained of vibration, and concerning exposure to improper working posture, most of them complained of repetitive arm and hand motions. Second, the absence experience had correlations with age, monthly income, smoking, number of employees, long term working, and shift work, and of the physical factors, hand vibration, noise, high temperature, low temperature and improper working posture had correlations with physical pain posture, movement of people and carrying heavy materials. Third, experience of exposure to hand vibration, noise and low temperature of the physical factors had impact on absence, and of the improper working posture, physical pain posture and carrying heavy stuff had impacts on absence. Through this study, it was found that of the work factors of Korean workers, physical factors and improper working posture had impacts on absence. The results of this study confirmed that physical factors and inappropriate working posture among work factors influenced the absenteeism. Therefore, it is required to improve the work environment regarding physical risk factors and prepare a systematic management plan.

Influence of Working Fluids to Heat Transfer Characteristics of Heat Exchanger using Oscillating Capillary Tube Heat Pipe for Low Temperature Waste Heat Recovery

  • Lee, Wook-Hyun;Im, Yong-Bin;Kim, Ju-Won;Kim, Jeung-Hoon;Kim, Jong-Soo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.9 no.3
    • /
    • pp.27-35
    • /
    • 2001
  • Heat transfer characteristics of a heat exchanged for low temperature waste heat recovery using oscillating capillary tube heat pipe (OCHP) were evaluated against the charging ratio variation of working fluid and various working fluids. R-l42b, R-22 and R-290 were used as working a 2.6mm in outside diameter, 1.44mm in inside diameter with 101m length and 140 turns. Charging ratio of working fluid was 40% and 50%. water was used as secondary fluid. Inlet temperature and mass velocity for each secondary fluid were 297 K, 280 K and 9~27 $4kg/m^2s$, respectively. From experimental results, it was found that heat transfer performance of R-22 was higher than those of R-142b and R-290 and it was proportional to Figure of Merit for thermosyphon. As a result, it was thought that R-22 was the most reasonable working fluid of waste heat recovery for low temperature waste heat recovery.

  • PDF

Influence of Working Fluids to Heat Transfer Characteristics of the Heat Exchanger using Oscillating Capillary Tube Heat Pipe for Low Temperature Waste Heat Recovery (저온 폐열회수용 진동세관형 히트파이프 열교환기의 작동 유체에 따른 열전달 특성)

  • 이욱현;임용빈;김정훈;김종수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.7
    • /
    • pp.659-666
    • /
    • 2000
  • Heat transfer characteristics of a heat exchanger for low temperature waste heat recovery using oscillating capillary tube heat pipe were evaluated against the charge ratio variation of working fluid and various working fluids. R-l42b, R-22 and R-290 were used as working fluids. The heat exchanger was composed of heat pipe with capillary tube bundles, having a 2.6mm in outer diameter, 1.4mm in inner diameter with 101m long, and 40 turns. Charge ratio of working fluid was 40% and 50%. Water was used as secondary fluid. Inlet temperature and mass velocity for each secondary fluid were 297 K, 280 K and9~27 kg /$m^2s$,, respectively. From experimental results, it was found that heat transfer performance of R-22 was higher than those of R-l42b and R-290 and it was proportional to Figure of merit for thermosyphons. As a result, it was thought that R-22 was the most suitable working fluid of waste heat recovery for low temperature waste heat recovery.

  • PDF

A Study on the Boiling Heat Transfer Characteristics Using Loop Type Thermosyphon

  • HAN, Kyu-il;CHO, Dong-Hyun
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.52 no.3
    • /
    • pp.257-262
    • /
    • 2016
  • Flexible two-phase thermosyphons are devices that can transfer large amounts of heat flux with boiling and condensation of working fluid resulting from small temperature differences. A flexible two-phase thermosyphon consists of a evaporator, an insulation unit, and a condenser. The working fluid inside the evaporator is evaporated by heating the evaporator in the lower part of the flexible two-phase thermosyphon and the evaporated steam rises to the condenser in the upper part to transfer heat in response to the cooling fluid outside the tube. The resultant condensed working fluid flows downward along the inside surface of the tube due to gravity. These processes form a cycle. Using R134a refrigerant as the working fluid of a loop type flexible two-phase thermosyphon heat exchanger, an experiment was conducted to analyse changes in boiling heat transfer performances according to differences in the temperature of the oil for heating of the evaporator, the temperature variations of the refrigerant, and the mass flows. According to the results of the present study, the circulation rate of the refrigerant increased and the pressure in the evaporator also increased proportionally as the temperature of the oil in the evaporator increased. In addition, the heat transfer rate of the boiler increased as the temperature of the oil in the evaporator increased.

황색종 잎담배 공동건조장의 환경개선

  • 신승구;백기현;이승철
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.20 no.2
    • /
    • pp.160-165
    • /
    • 1998
  • The Joint curing barns for flue-cured tobacco is a favorite with the tobacco farmers in Korea. However, most of farmer utilizing the joint curing barns indicated many problems such as high temperature and noise in the working room and a dry of cured leaves in the storage room. A structure of Joint curing barns has been modified to meet the needs of tobacco farmers. Compared with the unimproved joint curing barns, the improved one showed that the noise of workshop decreased about 7.7~10.8db, the amount of $CO_2$ decreased 40~50ppm in a working room and 80~100ppm in a machine room. Ammonia gas decreased 0.29mg/㎥ and the temperature of a working room dropped about 2.1~3.5$^{\circ}C$. The amount of air flow in a working room increased 23.2% at a site being 2m away from the entrance and 30.8% at a center. The inner temperature of the improved storage room showed that maximum temperature dropped about 3$^{\circ}C$, minimum temperature was high about 2$^{\circ}C$. The highest relative humidity was low 6%, the lowest one increased high about 10% when compared with the unimproved joint curing barns.

  • PDF

A Study on Heat Transfer Characteristics of Separate Type Heat Pipe with a Rotor (회전자를 갖는 분리형 히트파이프의 열전달특성에 관한 연구)

  • Jun, C.H.;Kim, O.G.
    • Solar Energy
    • /
    • v.20 no.3
    • /
    • pp.75-84
    • /
    • 2000
  • The purpose of this research is to study on the heat transfer characteristics of separate type heat pipe with a rotor. The heat transfer characteristics of the rotor condenser are various on input heat of evaporator, rotational speeds of rotor, and working fluid amount. The results obtained from the study are as follows. 1. Magnetic fluid using seal of the rotor operated in stability by a variation of temperature and rotation speeds. The configuration of magnetic fluid seal assembly was adequate. 2. Steam ejector is effective in recovering working fluid condensate in the rotor. When steam ejector is operating, the heat flux of working fluid does not change, with the wall temperature in the rotor. 3. The optimum design conditions on working fluid amount and rotational speeds are effective in evaporator volume 50%, rotational speeds 200rpm, 300rpm, and operating temperature $80^{\circ}C$. With working fluid amount increasing, overall heat transfer coefficient decreases linearly.

  • PDF

Study on K-factor for temperature variation of working fluid in spray nozzle with orifice (오리피스형 분사노즐에서 작동유체의 온도변화에 따른 K-factor에 관한 연구)

  • Bae, K.Y.;Chung, H.T.;Kim, C.H.;Kim, H.B.
    • Journal of Power System Engineering
    • /
    • v.12 no.3
    • /
    • pp.12-18
    • /
    • 2008
  • In the present study, the numerical simulation has been performed to investigate K-factor for temperature variation of working fluid in spray nozzle with orifice. The commercial CFD software, Fluent with the proper modeling was applied for analyzing the internal of the spray nozzle. Numerical result for K-factor at $20^{\circ}C$ agrees with the experimental result that it applied n=0.5 within about 7% error. The pressure drop inside nozzle is showed 20% passing swirler, 70% in the region between the outlet of swirler and the orifice and 10% at the outlet of orifice. As the operating pressure is increased, K-factor is decreased by effect of flow resistance at it's inlet before pass swirler. The temperature increase of working fluid reduced the flow rate according to reducing of density, and average 1.23% decrease is showed in the present research.

  • PDF

Effect of Working Gas Pressure on Misfirng of ac PDP at High Ambient Temperature

  • Ryu, Jae-Hwa;Choi, Joon-Young;Kim, Dong-Hyun;Kim, Joong-Kyun;Kim, Young-Kee;Lee, Ho-Jun;Park, Chung-Hoo
    • Journal of Information Display
    • /
    • v.4 no.4
    • /
    • pp.25-32
    • /
    • 2003
  • One of the important problems in ac PDP in recent years is the misfiring of ac PDP at high ambient temperatures which consequently degrades the image quality of the ac PDP. This may be due to the change of working gas pressure and/or MgO surface characteristics at high ambient temperatures. This paper deals with the effect of working gas pressure on the misfiring of ac PDP at high ambient temperature. From this study, we found that the main cause of the misfiring at high ambient temperature is the increase in discharge firing voltage induced by increased working gas pressure

Non Working Day Estimation in the Construction Project in Cheongju and Chungju Region Considering Weather Condition (기후조건에 따른 청주지역의 작업불능일 산정)

  • Baek, Dae-Hyun;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2007.11a
    • /
    • pp.558-561
    • /
    • 2007
  • In this paper, non working day for the construction project in Cheongju and Chungju region considering weather condition was estimated. In Cheongju region, non working day for outside and half outside work was 157days and for interior work 144days. For Chungju region, non working day for outside and half outside work was 160days and for interior work 144days. Non working day affected by temperature was 144 days at both Chungju and Cheongju. Non working day due to low temperature was 109 days and it due to high temperature was 45 days for Choengju. In Chungju, it was 11Sdays for cold weather, while it due to hot weather was 29 days.Non working day due to rainfall was 23 days at both region. To reduce the deviation between estimated non working days and measured ones, proper selection of the duration is required.

  • PDF

An Experimental Study on the Thermal Characteristics of the Working Uniform Exposed to the Radiation Heat (복사열에 노출된 작업복의 열적특성에 관한 실험적 연구)

  • 방창훈;이진호;예용택
    • Journal of the Korean Society of Safety
    • /
    • v.17 no.3
    • /
    • pp.56-60
    • /
    • 2002
  • The purpose of this study was to present the thermal characteristics of the working uniform exposed to the radiation heat. The effect of exposure time and exposure distance on the changes and the relationship between physical properties were investigated experimentally. Regardless of the kind of working uniform, the surface temperature of the working uniform with exposed time sharply increases as exposed distance is more close and the reaching time of steady state is shorter. The surface temperature of working uniform exponentially decreases as exposed distance become more distant. For the safety of the working man, it is necessary that he work far away at a fixed standard distance from the radiant heat source.