• Title/Summary/Keyword: Work-Net

Search Result 1,105, Processing Time 0.028 seconds

Optimal Design of a Multi-Layered Plate Structure Under High-Velocity Impact (다중판재의 고속충돌에 관한 최적설계)

  • Yoon, Deok-Hyun;Park, Myung-Soo;Yoo, Jeong-Hoon;Chung, Dong-Teak
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.10
    • /
    • pp.1793-1799
    • /
    • 2003
  • An optimal design of a multi-layered plate structure to endure high-velocity impact has been suggested by using size optimization after numerical simulations. The NET2D, a Lagrangian explicit time-integration finite element code for analyzing high-velocity impact, was used to find the parameters for the optimization. Three different materials such as mild steel, aluminum for a multi-layered plate structure and die steel for the pellet, were assumed. In order to consider the effects of strain rate hardening, strain hardening and thermal softening, Johnson-Cook model and Phenomenological Material Model were used as constitutive models for the simulation. It was carried out with several different gaps and thickness of layers to figure out the trend in terms of those parameters' changes under the constraint, which is against complete penetration. Also, the measuring domain has been shrunk with several elements to reduce the analyzing time. The response surface method based on the design of experiments was used as optimization algorithms. The optimized thickness of each layer in which perforation does not occur has been obtained at a constant velocity and a designated total thickness. The result is quite acceptable satisfying both the minimized deformation energy and the weight criteria. Furthermore, a conceptual idea for topology optimization was suggested for the future work.

Boundless Technologies: Mind-setting Value Creations

  • Rolfsen Rolf Kenneth;Kongsvold Kenneth;Kjolle Kari Hovin;Karlsen Stale
    • International Journal of Quality Innovation
    • /
    • v.6 no.3
    • /
    • pp.95-120
    • /
    • 2005
  • Utilization of information and communication technologies is commonly accepted as important to value creation in the knowledge economy. Nevertheless, empirical findings from our business case studies often show that while sophisticated technological tools may be developed, the potentials are not realized. It is evident that technology is subject to adaptive and emergent strategies of use, diverging from the original intention. Within this space of opportunities, we elaborate the importance of constructing strategic concepts as communication tools to support organisational implementation of technologies. We use the concept of organisational implementation as a way of taking the technology into use in order to support changes and value creation in the user organisation. In this paper we present our findings related to how use and experiences are conditioned by the users' expectations. We have conducted a business case study in order to understand and explore how users employ and use a particular wireless technology infrastructure. On behalf of the infrastructure vendor, we have studied three different organisations that use this technology. The overall research goal of our joint research project was to find out what is good use and for whom. We find that users struggle to go beyond the expectations they had when they were conceptualising and telling us about their practice. We have good indications that a narrowed consciousness was also conditioning the users' use of the technology. In this paper we draw the conclusion that technological implementations towards changing work practices and value creation must not be viewed by the company solely as a knowledge acquisition process, but as a process of knowledge creation. Organisational implementation is an ongoing process, a learning process at both the organisational and individual level. Flexible tools and technologies are constituted and shaped in interaction and communication in the workplace. Based on that knowledge, we build up an argument for an organisational implementation framework, including strategic discussions, learning spaces, and concept constructions.

Analysis of Current Status of Qigong Training Organizations focusing on Javaldonggong (자발동공을 중심으로 한 국내 기공수련 단체 현황 분석)

  • Sung, Soo-Hyun;Park, Jong-Hyun;Choi, Seong-Hun;Han, Chang-Hyun;Lee, Sang-Nam
    • Journal of Haehwa Medicine
    • /
    • v.22 no.2
    • /
    • pp.47-56
    • /
    • 2014
  • Objectives : The purpose of this study is to raise the proper recognition of Qigong and expand the area of Medical Qigong in the korean Medicine by investigating and analyzing the current state of Javaldonggong training which has a high medical value but there has not been little research on. Method : The survey of this study was conducted by doing a search on the internet - Naver(www.naver.com) and Daum(www.daum.net), Nate(www.nate.com), trying question-and-answer on the websites and over the phone, visiting the organizations and reading their publications. Results : None of the teachers of these selected organizations are doctors. One thing all these organizations have in common is that they are, ultimately, aiming to gain the individual enlightenment and to contribute to public welfare although the terms they use are different. As for training contents, most of these organizations use breathing, meditation, gymnastics, circuit training in addition to Javaldonggong training and they work on Javaldonggong training programs to prevent problems that Qigong training can result in. 7 organizations have published the books of the theories, which are based on their own Javaldonggong training experience. Conclusions : Applying Javaldonggong training to the therapy for the diseases is the role of a doctor of Korean medicine. A further study of and a great interest in Javaldonggong training are required for Korean medical doctors to gain a firm foothold in using it as the medical Qigong therapy.

CO-SEPARATION OF Am AND RARE EARTH ELEMENTS FROM A HIGHLY ACIDIC RADWASTE SOLUTION BY A SOLVENT EXTRACTION WITH (DIMETHYLDIBUTYL TETRADECYLMALONAMIDE-DIHEXYLOCTANAMIDE)/N-DODECANE

  • Lee, Eil-Hee;Lim, Jae-Gwan;Chung, Dong-Yong;Yoo, Jae-Hyung;Kim, kwang-Wook
    • Nuclear Engineering and Technology
    • /
    • v.41 no.3
    • /
    • pp.319-326
    • /
    • 2009
  • This study was carried out to investigate the high-acidity co-separation of Am and RE from a simulated radwaste solution by a solvent extraction using a mixture of Dimethyldibutyltetradecylmalonamide (DMDBTDMA, as an extractant) and dihexyl octanamide (DHOA, as a phase modifier) diluted with n-dodecane (NDD). All the experiments were conducted as a batch type. First, the environmentally friendly DMDBTDMA and DHOA composed of only CHON atoms were self-synthesized. Then, the conditions for the prevention of a third phase, generated in the organic phase were examined. In addition, the effects of the concentration of nitric acid, DHOA, oxalic acid and $H_2O_2$ on the co-extraction of Am and RE were elucidated. Consequently, the optimum condition of (0.5M DMDBTDMA+0.5M DHOA)/NDD-0.3M $C_2H_2O_4-4.5M$ $HNO_3$ and O/A=2 was obtained through experimental work. Under this condition, the extraction yields were found to be about 80% for Am, more than 70% for RE such as La, Eu, Nd, Ce, etc., 3% for Cs and Sr, 69% for Fe and less than 11% for Mo and Ru. For the co-extraction of Am and RE, Fe should be removed in advance or prevented from a co-extraction with Am by controlling the different extraction rates of Am and Fe. About 95% of the Am and RE in the organic phase were stripped using a 0.5M $HNO_3$.

Safety assessment of generation III nuclear power plant buildings subjected to commercial aircraft crash part III: Engine missile impacting SC plate

  • Xu, Z.Y.;Wu, H.;Liu, X.;Qu, Y.G.;Li, Z.C.;Fang, Q.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.2
    • /
    • pp.417-428
    • /
    • 2020
  • Investigations of the commercial aircraft impact effect on nuclear island infrastructures have been drawing extensive attention, and this paper aims to perform the safety assessment of Generation III nuclear power plant (NPP) buildings subjected to typical commercial aircrafts crash. At present Part III, the local damage of the rigid components of aircraft, e.g., engine and landing gear, impacting the steel concrete (SC) structures of NPP containment is mainly discussed. Two typical SC target panels with the thicknesses of 40 mm and 100 mm, as well as the steel cylindrical projectile with a mass of 2.15 kg and a diameter of 80 mm are fabricated. By using a large-caliber air gas gun, both the projectile penetration and perforation test are conducted, in which the striking velocities were ranged from 96 m/s to 157 m/s. The bulging velocity and the maximal deflection of rear steel plate, as well as penetration depth of projectile are derived, and the local deformation and failure modes of SC panels are assessed experimentally. Then, the commercial finite element program LS-DYNA is utilized to perform the numerical simulations, by comparisons with the experimental and simulated projectile impact process and SC panel damage, the numerical algorithm, constitutive models and the corresponding parameters are verified. The present work can provide helpful references for the evaluation of the local impact resistance of NPP buildings against the aircraft engine.

Safety assessment of Generation III nuclear power plant buildings subjected to commercial aircraft crash Part I: FE model establishment and validations

  • Liu, X.;Wu, H.;Qu, Y.G.;Xu, Z.Y.;Sheng, J.H.;Fang, Q.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.2
    • /
    • pp.381-396
    • /
    • 2020
  • Investigations of the commercial aircraft impact effect on nuclear island infrastructures have been drawing extensive attention, and this paper aims to perform the safety assessment of Generation III nuclear power plant (NPP) buildings subjected to typical commercial aircrafts crash. At present Part I, finite element (FE) models establishment and validations for both the aircrafts and NPP buildings are performed. (i) Airbus A320 and A380 aircrafts are selected as the representative medium and large commercial aircrafts, and the corresponding fine FE models including the skin, beam, fuel and etc. are established. By comparing the numerically derived impact force time-histories with the existing published literatures, the rationality of aircrafts models is verified. (ii) Fine FE model of the Chinese Zhejiang Sanao NPP buildings is established, including the detailed structures and reinforcing arrangement of both the containment and auxiliary buildings. (iii) By numerically reproducing the existing 1/7.5 scaled aircraft model impact tests on steel plate reinforced concrete (SC) panels and assessing the impact process and velocity time-history of aircraft model, as well as the damage and the maximum deflection of SC panels, the applicability of the existing three concrete constitutive models (i.e., K&C, Winfrith and CSC) are evaluated and the superiority of Winfrith model for SC panels under deformable missile impact is verified. The present work can provide beneficial reference for the integral aircraft crash analyses and structural damage assessment in the following two parts of this paper.

Safety assessment of Generation III nuclear power plant buildings subjected to commercial aircraft crash Part II: Structural damage and vibrations

  • Qu, Y.G.;Wu, H.;Xu, Z.Y.;Liu, X.;Dong, Z.F.;Fang, Q.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.2
    • /
    • pp.397-416
    • /
    • 2020
  • Investigations of the commercial aircraft impact effect on nuclear island infrastructures have been drawing extensive attention, and this paper aims to perform the safety assessment of Generation III nuclear power plant (NPP) buildings subjected to typical commercial aircrafts crash. At present Part II, based on the verified finite element (FE) models of aircrafts Airbus A320 and A380, as well as the NPP containment and auxiliary buildings in Part I of this paper, the whole collision process is reproduced numerically by adopting the coupled missile-target interaction approach with the finite element code LS-DYNA. The impact induced damage of NPP plant under four impact locations of containment (cylinder, air intake, conical roof and PCS water tank) and two impact locations of auxiliary buildings (exterior wall and roof of spent fuel pool room) are evaluated. Furthermore, by considering the inner structures in the containment and raft foundation of NPP, the structural vibration analyses are conducted under two impact locations (middle height of cylinder, main control room in the auxiliary buildings). It indicates that, within the discussed scenarios, NPP structures can withstand the impact of both two aircrafts, while the functionality of internal equipment on higher floors will be affected to some extent under impact induced vibrations, and A380 aircraft will cause more serious structural damage and vibrations than A320 aircraft. The present work can provide helpful references to assess the safety of the structures and inner equipment of NPP plant under commercial aircraft impact.

Transducer analysis and signal processing of PMSF with embedded bluff body

  • Yan, Xiao-Xue;Xu, Ke-Jun;Xu, Wei;Yu, Xin-Long;Wu, Jian-Ping
    • Nuclear Engineering and Technology
    • /
    • v.52 no.2
    • /
    • pp.296-307
    • /
    • 2020
  • Permanent magnet sodium flowmeter (PMSF) have been used to measure the sodium flow in fast breeder reactors. Due to the effects of irradiation, thermal cycling, time lapse, etc., the magnetic flux density of the PMSF will decrease after being used in the reactor for a period of time. Therefore, it must be calibrated regularly. But some flowmeters that immersed in sodium cannot be removed for an off-line calibration, so the on-line calibration is required. However, the best online calibration accuracy of PMSF using cross-correlation analysis method was 2.0-level without considering the repeatability. In order to further improve this work, the operational principle of the transducer in PMSF is analyzed and the design principle of the transducer is proposed. The transducers were tested on the sodium flow loop to collect the experimental data. The signal characteristics are analyzed from the time and frequency domains, respectively. The cross-correlation analysis method based on biased estimation is adopted to obtain the flow rate. The verification experimental results showed that the measurement accuracy is 1.0-level when the flow velocity is above 0.5 m/s, and the measurement accuracy is 3.0-level when the flow velocity is in the range of 0.2 m/s to 0.5 m/s.

Oil Pipeline Weld Defect Identification System Based on Convolutional Neural Network

  • Shang, Jiaze;An, Weipeng;Liu, Yu;Han, Bang;Guo, Yaodan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.3
    • /
    • pp.1086-1103
    • /
    • 2020
  • The automatic identification and classification of image-based weld defects is a difficult task due to the complex texture of the X-ray images of the weld defect. Several depth learning methods for automatically identifying welds were proposed and tested. In this work, four different depth convolutional neural networks were evaluated and compared on the 1631 image set. The concavity, undercut, bar defects, circular defects, unfused defects and incomplete penetration in the weld image 6 different types of defects are classified. Another contribution of this paper is to train a CNN model "RayNet" for the dataset from scratch. In the experiment part, the parameters of convolution operation are compared and analyzed, in which the experimental part performs a comparative analysis of various parameters in the convolution operation, compares the size of the input image, gives the classification results for each defect, and finally shows the partial feature map during feature extraction with the classification accuracy reaching 96.5%, which is 6.6% higher than the classification accuracy of other existing fine-tuned models, and even improves the classification accuracy compared with the traditional image processing methods, and also proves that the model trained from scratch also has a good performance on small-scale data sets. Our proposed method can assist the evaluators in classifying pipeline welding defects.

The characteristics of farmer's dermal exposure during pesticide spraying and dilution in cut rose greenhouse (절화장미 시설하우스에서 방제 작업시 농약의 피부노출 특성)

  • Kim, Hyo-Cher;Kim, Kyung-Ran;Lee, Kyung-Suk;Kim, Kyung-Su;Cho, Kyun-Ah
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.17 no.3
    • /
    • pp.203-211
    • /
    • 2007
  • This study was conducted in cut rose cultivation field in Goyang to evaluate pesticide exposure of farmers and the relationship between the exposure and work environment/method for cut rose farmers. Dermal exposure was assessed with patch (thin chromatography layer paper), cotton glove by body parts during mixing and spraying works in which pyrethroid, organophosphate, carbamate pesticide were used in 4 cut rose greenhouses located in Goyang province, checking characteristics of environment/working method at the same time. Body parts assessed were as follows ; glove : hand, patch : head, neck(front/back), chest, back, shoulder(right/left), upperarm(right/left), forearm(right/left), thigh(right/left), shin(right/left). Pesticides were analyzed using gas chromatography(NPD/FID) after extracting with ethyl acetate. Exposure amount differed according to pesticide type. But after standardizing with total net weight of pesticide sprayed, there were no significant difference among pesticides. There were significant difference in exposure amount among body parts(especially exposure amount of thigh, shin were more than the others), which means exposure happen not by pesticide dispersion in air but by contact with cut rose(leaf, branch) indirectly. Walking forward during spraying made farmers more exposed than waling backward, these results means contacts with leaves/branches made exposure happen in cut rose greenhouse also. As a result, pesticide exposure in cut rose greenhouse was related with contact of leaf/branch which pesticide remained in, which made exposure pattern (especially exposure amount) differ by body parts