• 제목/요약/키워드: Words classification

검색결과 463건 처리시간 0.025초

문서 분류의 개선을 위한 단어-문자 혼합 신경망 모델 (Hybrid Word-Character Neural Network Model for the Improvement of Document Classification)

  • 홍대영;심규석
    • 정보과학회 논문지
    • /
    • 제44권12호
    • /
    • pp.1290-1295
    • /
    • 2017
  • 문서의 텍스트를 바탕으로 각 문서가 속한 분류를 찾아내는 문서 분류는 자연어 처리의 기본 분야 중 하나로 주제 분류, 감정 분류 등 다양한 분야에 이용될 수 있다. 문서를 분류하기 위한 신경망 모델은 크게 단어를 기본 단위로 다루는 단어 수준 모델과 문자를 기본 단위로 다루는 문자 수준 모델로 나누어진다. 본 논문에서는 문서를 분류하는 신경망 모델의 성능을 향상시키기 위하여 문자 수준과 단어 수준의 모델을 혼합한 신경망 모델을 제안한다. 제안하는 모델은 각 단어에 대하여 문자 수준의 신경망 모델로 인코딩한 정보와 단어들의 정보를 저장하고 있는 단어 임베딩 행렬의 정보를 결합하여 각 단어에 대한 특징 벡터를 만든다. 추출된 단어들에 대한 특징 벡터를 바탕으로, 주의(attention) 메커니즘을 이용한 순환 신경망을 단어 수준과 문장 수준에 각각 적용하는 계층적 신경망 구조를 통해 문서를 분류한다. 제안한 모델에 대하여 실생활 데이터를 바탕으로 한 실험으로 효용성을 검증한다.

노인주택의 개념과 유형화 연구 (A Classification of Elderly Housing Types Toward a Holistic Understanding)

  • 이연숙;이성미;김민수;이유진;이선민
    • KIEAE Journal
    • /
    • 제7권1호
    • /
    • pp.81-93
    • /
    • 2007
  • Due to increasing awareness about the risk which will be caused by fast aging of population, the importance of aging friendly environment including housing has been paid much attention both individually and socially. In this regard, recently, in Korea, diverse elderly living facilities have increased in its number. Because of little experience, however, there have not been enough holistic understanding about aging friendly housing. Accordingly, most previous literature which introduced elderly housing to Korean society have translated differently, thereby caused more confusion. To facilitate communication about aging friendly housing, clear and consistent definition of its type and comprehensive range needs to be delineated. The purpose of this study is to classify various elderly housing alternatives in architecturally understandable way. This study was proceeded by content analysis of existing literature on elderly housing environment. A comprehensive review on the concept and existing classification of elderly housing was done prior to main analysis of translated Korean words. After classifying the Korean words of definition, systematic classification which focused on two important criteria of determining physical characteristics, such as space sharing degree and intentional plannedness was delineated and suggested. This research shows the first step toward the theoretical foundation for elderly housing classification.

의복 이미지의 계층구조에 대한 연구 (A Study on the Hierarchy of Clothing Images)

  • 정인희;이은영
    • 한국의류학회지
    • /
    • 제17권4호
    • /
    • pp.529-538
    • /
    • 1993
  • This study was intended to identify the hierarchy of clothing images, which is expected to be helpful in style classification and product positioning. A questionnaire consisted of 110 words expressing clothing images was developed, and eight clothing photographs were selected as stimuli. 289 female subjects aged between 22 to 37 responded to two of the eight photographs during September, 1991. 110 words were reduced to 62 words based on their independence before conducting factor analysis to identify the constructing factors of clothing images. Nine words with negative connotations were eliminated, because they are not sought in product development. To explain the hierarchy of clothing images, cluster analysis was applied. To observe the association of 53 words, dendrogram was introduced, and to interpret the result, eleven sub clusters were determined. This 11 clusters were continuously combined according to their similarities, until they integrated into one 'clothing image'. Two major division of image clusters were 'graceful and feminine image', and 'mannish and simple image'.

  • PDF

상품 리뷰 요약에서의 문맥 정보를 이용한 의견 분류 방법 (A Sentiment Classification Method Using Context Information in Product Review Summarization)

  • 양정연;명재석;이상구
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제36권4호
    • /
    • pp.254-262
    • /
    • 2009
  • e비즈니스가 활발히 이루어지면서 소비자들은 온라인 쇼핑몰올 통해 수많은 상품을 접할 수 있게 되었고, 상품구매 시 다른 사람들의 리뷰를 참고하게 되었다. 하지만, 리뷰의 수도 많아짐에 따라 소비자가 모든 리뷰들을 살펴보기가 힘들다는 문제점이 대두되었으며 이를 해결하기 위해서 리뷰의 상품에 대한 평가를 요약하고 성향을 파악하는 오피니언 마이닝 연구가 나타나게 되었다. 본 논문에서는 상품리뷰를 대상으로 오피니언 마이닝을 수행하는 경우 어휘의 의견 성향을 파악할 때, 문맥정보를 활용하여 기존의 의견분류방법 보다 좀 더 정확한 의견 판단이 가능한 방법에 대해 다루고 있다. 이를 위해, 어휘가 사용될 때의 문맥정보를 정의하고 이를 의견분류에 적용하는 방법을 제안하였으며, 실험을 통하여 기존 연구 보다 상황별 알맞은 의견분류가 가능함을 보였다. 또한 수작업으로 말뭉치의 핵심 어휘들을 정의했던 기존 연구들에서의 방식에서 벗어나, 리뷰본문과 리뷰점수를 활용하여 자동으로 상황에 맞는 말뭉치를 구축하는 방법도 제안하였다. 이를 통해 상품리뷰에 나타난 어휘들의 문맥에 맞는 의미 성향을 정확하고 쉽게 판별해 낼 수 있게 되었다.

재발량 분석을 이용한 음향 상황 인지 (Acoustic scene classification using recurrence quantification analysis)

  • 박상욱;최우현;고한석
    • 한국음향학회지
    • /
    • 제35권1호
    • /
    • pp.42-48
    • /
    • 2016
  • 동일한 장소에서도 매우 다양한 음향이 발생하고, 서로 다른 장소에서도 유사한 음향이 발생하기 때문에 훈련 데이터가 적거나, 훈련 단계에서 일부 음향만 고려된 경우 음향 상황 인지 성능을 보장할 수 없다. 이러한 문제점을 해결하기 위한 방법으로 Bag of Words (BOW) 기반 히스토그램 특징이 소개되었다. 하지만 BOW 기반 히스토그램 특징은 일정 시간동안 발생한 음향의 분포를 이용하기 때문에 음향이 발생한 순차적인 정보는 고려할 수 없다. 음향 상황 인지에서 일정 시간 동안 발생한 음향의 주기성과 지속성은 상황을 인지하는데 중요한 정보가 될 수 있다. 따라서 본 논문에서는 재발량 분석을 이용하여 주기성과 지속성에 대한 특징을 추출하였다. 인식 실험에서 재발량 분석을 통해 추출된 특징을 함께 사용한 경우 기존 방법들 보다 향상된 성능을 확인했다.

나이브 베이즈 기반 소셜 미디어 상의 신조어 감성 판별 기법 (Sensitivity Identification Method for New Words of Social Media based on Naive Bayes Classification)

  • 김정인;박상진;김형주;최준호;김한일;김판구
    • 스마트미디어저널
    • /
    • 제9권1호
    • /
    • pp.51-59
    • /
    • 2020
  • 인터넷의 발달과 스마트폰의 보급으로 인하여 그에 따른 소셜 미디어 문화가 형성됨에 따라 PC통신부터 지금까지 소셜 미디어 신조어가 그 문화로 자리 잡아가고 있다. 소셜 미디어의 등장과 사람들의 가교역할을 해주는 스마트폰의 보급화로 신조어가 생기고 빈번하게 사용되고 있는 추세이다. 신조어의 사용은 다양한 문자 제한 메신저의 문제점을 해결하고 짧은 문장을 사용하여 데이터를 줄이는 등 많은 장점을 가지고 있다. 그러나 신조어에는 사전적인 의미가 없으므로 데이터 마이닝 기술이나 빅데이터와 같은 연구에서 사용되는 알고리즘의 성능 저하와 연구에 제약사항이 발생한다. 따라서 본 논문에서는 웹 크롤링을 통해 텍스트 데이터를 추출하고, 텍스트 마이닝과 오피니언 마이닝을 통해 의미부여 및 단어들에 대한 감정적 분류를 통한 문장의 오피니언 파악을 진행하고자 한다. 실험은 다음과 같이 3단계로 진행하였다. 첫째, 소셜 미디어에서 새로운 단어를 수집하여 수집된 단어는 긍정적이고 부정적인 학습을 받게 하였다. 둘째, 표준 문서를 사용하여 감정적 가치를 도출하고 검증하기 위해 TF-IDF를 사용하여 데이터의 감정적 가치를 측정하기 위해 명사 빈도수를 측정한다. 신조어와 마찬가지로 분류된 감정적 가치가 적용되어 감정이 표준 언어 문서로 분류되는지 확인하였다. 마지막으로, 새로 합성된 단어와 표준 감정적 가치의 조합을 사용하여 장비 기술의 비교분석을 수행하였다.

음절구조로 본 서울코퍼스의 글 어절과 말 어절의 음소분포와 음운변동 (Phoneme distribution and phonological processes of orthographic and pronounced phrasal words in light of syllable structure in the Seoul Corpus)

  • 양병곤
    • 말소리와 음성과학
    • /
    • 제8권3호
    • /
    • pp.1-9
    • /
    • 2016
  • This paper investigated the phoneme distribution and phonological processes of orthographic and pronounced phrasal words in light of syllable structure in the Seoul Corpus in order to provide linguists and phoneticians with a clearer understanding of the Korean language system. To achieve the goal, the phrasal words were extracted from the transcribed label scripts of the Seoul Corpus using Praat. Following this, the onsets, peaks, codas and syllable types of the phrasal words were analyzed using an R script. Results revealed that k0 was most frequently used as an onset in both orthographic and pronounced phrasal words. Also, aa was the most favored vowel in the Korean syllable peak with fewer phonological processes in its pronounced form. The total proportion of all diphthongs according to the frequency of the peaks in the orthographic phrasal words was 8.8%, which was almost double those found in the pronounced phrasal words. For the codas, nn accounted for 34.4% of the total pronounced phrasal words and was the varied form. From syllable type classification of the Corpus, CV appeared to be the most frequent type followed by CVC, V, and VC from the orthographic forms. Overall, the onsets were more prevalent in the pronunciation more than the codas. From the results, this paper concluded that an analysis of phoneme distribution and phonological processes in light of syllable structure can contribute greatly to the understanding of the phonology of spoken Korean.

카테고리 중립 단어 활용을 통한 주가 예측 방안: 텍스트 마이닝 활용 (Stock Price Prediction by Utilizing Category Neutral Terms: Text Mining Approach)

  • 이민식;이홍주
    • 지능정보연구
    • /
    • 제23권2호
    • /
    • pp.123-138
    • /
    • 2017
  • 주식 시장은 거래자들의 기업과 시황에 대한 기대가 반영되어 움직이기에, 다양한 원천의 텍스트 데이터 분석을 통해 주가 움직임을 예측하려는 연구들이 진행되어 왔다. 주가의 움직임을 예측하는 것이기에 단순히 주가의 등락 뿐만이 아니라, 뉴스 기사나 소셜 미디어의 반응에 따라 거래를 하고 이에 따른 수익률을 분석하는 연구들이 진행되어 왔다. 주가의 움직임을 예측하는 연구들도 다른 분야의 텍스트 마이닝 접근 방안과 동일하게 단어-문서 매트릭스를 구성하여 분류 알고리즘에 적용하여 왔다. 문서에 많은 단어들이 포함되어 있기 때문에 모든 단어를 가지고 단어-문서 매트릭스를 만드는 것보다는 단어가 문서를 범주로 분류할 때 기여도가 높은 단어들을 선정하여야 한다. 단어의 빈도를 고려하여 너무 적은 등장 빈도나 중요도를 보이는 단어는 제거하게 된다. 단어가 문서를 정확하게 분류하는 데 기여하는 정도를 측정하여 기여도에 따라 사용할 단어를 선정하기도 한다. 단어-문서 매트릭스를 구성하는 기본적인 방안인 분석의 대상이 되는 모든 문서를 수집하여 분류에 영향력을 미치는 단어를 선정하여 사용하는 것이었다. 본 연구에서는 개별 종목에 대한 문서를 분석하여 종목별 등락에 모두 포함되는 단어를 중립 단어로 선정한다. 선정된 중립 단어 주변에 등장하는 단어들을 추출하여 단어-문서 매트릭스 생성에 활용한다. 중립 단어 자체는 주가 움직임과 연관관계가 적고, 중립 단어의 주변 단어가 주가 상승에 더 영향을 미칠 것이라는 생각에서 출발한다. 생성된 단어-문서 매트릭스를 가지고 주가의 등락 여부를 분류하는 알고리즘에 적용하게 된다. 본 연구에서는 종목 별로 중립 단어를 1차 선정하고, 선정된 단어 중에서 다른 종목에도 많이 포함되는 단어는 추가적으로 제외하는 방안을 활용하였다. 온라인 뉴스 포털을 통해 시가 총액 상위 10개 종목에 대한 4개월 간의 뉴스 기사를 수집하였다. 3개월간의 뉴스 기사를 학습 데이터로 분류 모형을 수립하였으며, 남은 1개월간의 뉴스 기사를 모형에 적용하여 다음 날의 주가 움직임을 예측하였다. 본 연구에서 제안하는 중립 단어 활용 알고리즘이 희소성에 기반한 단어 선정 방안에 비해 우수한 분류 성과를 보였다.

맵리듀스를 이용한 통계적 접근의 감성 분류 (Statistical Approach to Sentiment Classification using MapReduce)

  • 강문수;백승희;최영식
    • 감성과학
    • /
    • 제15권4호
    • /
    • pp.425-440
    • /
    • 2012
  • 인터넷의 규모가 커지면서 주관적인 데이터가 증가하였다. 이에 주관적인 데이터를 자동으로 분류할 필요가 생겼다. 감성 분류는 데이터를 여러 감성 종류에 따라 나누는 것을 말한다. 감성 분류 연구는 크게 자연어 처리와 감성어 사전 구축을 중심으로 이루어져 왔다. 이전의 감성 분류 연구는 자연어 처리 과정에서 형태소 분석이 제대로 이루어지지 않는 문제와 감성어 사전구축 시 등록할 단어를 선별하고 단어의 감성 정도를 정하는 데에 명확한 기준을 정하기 힘든 문제가 있다. 이러한 어려움을 해결하기 위하여 감성 분류에 대용량 데이터와 통계적 접근의 조합을 제안한다. 본 논문에서 제안하는 방법은 단어의 의미를 찾는 대신 수많은 데이터에서 등장하는 표현들의 통계치를 이용하여 감성 판단을 하는 것이다. 이러한 접근은 자연어 처리 알고리즘에 의존하던 이전 연구와 달리 데이터에 집중한다. 대용량 데이터 처리를 위해 하둡과 맵리듀스를 이용한다.

  • PDF

연관 단어 마이닝을 사용한 웹문서의 특징 추출 (Feature Extraction of Web Document using Association Word Mining)

  • 고수정;최준혁;이정현
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제30권4호
    • /
    • pp.351-361
    • /
    • 2003
  • 단어의 연관성을 이용하여 문서의 특징을 추출하는 기존의 방법은 주기적으로 프로파일을 갱신해야하는 문제점, 명사구를 처리해야 하는 문제점, 명사구를 처리해야 하는 문제점, 색인어에 대한 화률을 계산해야 하는 문제점 등을 포함한다. 본 논문에서는 연관 단어 마이닝을 사용하여 문서의 특징을 효율적으로 추출하는 방법을 제안한다. 제안한 방법은 Apriori 알고리즘을 사용하여 문서의 특징을 단일 단어가 아닌 연관 단어 백터로 표현한다. Apriori 알고리즘을 사용하여 문서의 특징을 단일 단어가 아닌 연관 단어 벡터로 표현한다. Apriori 알고리즘을 사용하여 문서로부터 추출된 연관 단어는 이를 구성하는 수와 신뢰도와 지지도에 따라 차이를 보인다. 따라서 본 논문에서는 문서 분류의 성능을 향상 시키기 위허ㅐ 연관 단어를 구성하는 단어의 수와 지지도를 결정하는 효율적인 방법을 제안한다. 연관 단어 마이닝을 이용한 특징 추출 방법은 프로파일을 사용하지 않으므로 프로파일 갱신의 필요성이 없으며, 색인어에 대한 확률을 계산하지 않고도, Apriori 알고리즘의 신뢰도와 지지도에 따라 자동으로 명사구를 생성하므로 단어의 연관성을 이용하여 문서의 특징을 추출하는 기존 방법에 대한 문제점을 해결한다. 제안한 방법의 성능을 평가하기 위해 Naive Bayes 분류자를 이용한 문서 분류에 적용하여 정보이득, 역문헌빈도의 방법과 비교하며, 또한 색인어의 연관성과 확률 모델을 기반으로 단어의 연관성을 이용하여 문서 분류를 하는 기존의 방법과 각각 비교한다.