• 제목/요약/키워드: Word-embedding

검색결과 237건 처리시간 0.028초

Semantic Feature Analysis for Multi-Label Text Classification on Topics of the Al-Quran Verses

  • Gugun Mediamer;Adiwijaya
    • Journal of Information Processing Systems
    • /
    • 제20권1호
    • /
    • pp.1-12
    • /
    • 2024
  • Nowadays, Islamic content is widely used in research, including Hadith and the Al-Quran. Both are mostly used in the field of natural language processing, especially in text classification research. One of the difficulties in learning the Al-Quran is ambiguity, while the Al-Quran is used as the main source of Islamic law and the life guidance of a Muslim in the world. This research was proposed to relieve people in learning the Al-Quran. We proposed a word embedding feature-based on Tensor Space Model as feature extraction, which is used to reduce the ambiguity. Based on the experiment results and the analysis, we prove that the proposed method yields the best performance with the Hamming loss 0.10317.

Deep recurrent neural networks with word embeddings for Urdu named entity recognition

  • Khan, Wahab;Daud, Ali;Alotaibi, Fahd;Aljohani, Naif;Arafat, Sachi
    • ETRI Journal
    • /
    • 제42권1호
    • /
    • pp.90-100
    • /
    • 2020
  • Named entity recognition (NER) continues to be an important task in natural language processing because it is featured as a subtask and/or subproblem in information extraction and machine translation. In Urdu language processing, it is a very difficult task. This paper proposes various deep recurrent neural network (DRNN) learning models with word embedding. Experimental results demonstrate that they improve upon current state-of-the-art NER approaches for Urdu. The DRRN models evaluated include forward and bidirectional extensions of the long short-term memory and back propagation through time approaches. The proposed models consider both language-dependent features, such as part-of-speech tags, and language-independent features, such as the "context windows" of words. The effectiveness of the DRNN models with word embedding for NER in Urdu is demonstrated using three datasets. The results reveal that the proposed approach significantly outperforms previous conditional random field and artificial neural network approaches. The best f-measure values achieved on the three benchmark datasets using the proposed deep learning approaches are 81.1%, 79.94%, and 63.21%, respectively.

단어 표현에 기반한 연관 바이오마커 발굴 (Biomarker Detection of Specific Disease using Word Embedding)

  • 윤영신;김유섭
    • 한국어정보학회:학술대회논문집
    • /
    • 한국어정보학회 2016년도 제28회 한글및한국어정보처리학술대회
    • /
    • pp.317-320
    • /
    • 2016
  • 기계학습 기반의 자연어처리 모듈에서 중요한 단계 중 하나는 모듈의 입력으로 단어를 표현하는 것이다. 벡터의 사이즈가 크고, 단어 간의 유사성의 개념이 존재하지 않는 One-hot 형태와 대조적으로 유사성을 표현하기 위해서 단어를 벡터로 표현하는 단어 표현 (word representation/embedding) 생성 작업은 자연어 처리 작업의 기계학습 모델의 성능을 개선하고, 몇몇 자연어 처리 분야의 모델에서 성능 향상을 보여 주어 많은 관심을 받고 있다. 본 논문에서는 Word2Vec, CCA, 그리고 GloVe를 사용하여 106,552개의 PubMed의 바이오메디컬 논문의 요약으로 구축된 말뭉치 카테고리의 각 단어 표현 모델의 카테고리 분류 능력을 확인한다. 세부적으로 나눈 카테고리에는 질병의 이름, 질병 증상, 그리고 난소암 마커가 있다. 분류 능력을 확인하기 위해 t-SNE를 이용하여 2차원으로 단어 표현 결과를 맵핑하여 가시화 한다. 2차원으로 맵핑된 결과 값을 코사인 유사도를 사용하여 질병과 바이오 마커간의 유사도를 구한다. 이 유사도 결과 값 상위 20쌍의 결과를 가지고 실제 연구가 되고 있는지 구글 스콜라를 통해 관련 논문을 검색하여 확인하고, 검색 결과를 점수화 한다. 실험 결과 상위 20쌍 중에서 85%의 쌍이 실제적으로 질병과 바이오 마커 간의 관계를 파악하는 방향으로 진행 되고 있으나, 나머지 15%의 쌍에 대해서는 실질적인 연구가 잘 되고 있지 않은 것으로 파악되었다.

  • PDF

단어 표현에 기반한 연관 바이오마커 발굴 (Biomarker Detection of Specific Disease using Word Embedding)

  • 윤영신;김유섭
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2016년도 제28회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.317-320
    • /
    • 2016
  • 기계학습 기반의 자연어처리 모듈에서 중요한 단계 중 하나는 모듈의 입력으로 단어를 표현하는 것이다. 벡터의 사이즈가 크고, 단어 간의 유사성의 개념이 존재하지 않는 One-hot 형태와 대조적으로 유사성을 표현하기 위해서 단어를 벡터로 표현하는 단어 표현 (word representation/embedding) 생성 작업은 자연어 처리 작업의 기계학습 모델의 성능을 개선하고, 몇몇 자연어 처리 분야의 모델에서 성능 향상을 보여 주어 많은 관심을 받고 있다. 본 논문에서는 Word2Vec, CCA, 그리고 GloVe를 사용하여 106,552개의 PubMed의 바이오메디컬 논문의 요약으로 구축된 말뭉치 카테고리의 각 단어 표현 모델의 카테고리 분류 능력을 확인한다. 세부적으로 나눈 카테고리에는 질병의 이름, 질병 증상, 그리고 난소암 마커가 있다. 분류 능력을 확인하기 위해 t-SNE를 이용하여 2차원으로 단어 표현 결과를 맵핑하여 가시화 한다. 2차원으로 맵핑된 결과 값을 코사인 유사도를 사용하여 질병과 바이오 마커간의 유사도를 구한다. 이 유사도 결과 값 상위 20쌍의 결과를 가지고 실제 연구가 되고 있는지 구글 스콜라를 통해 관련 논문을 검색하여 확인하고, 검색 결과를 점수화 한다. 실험 결과 상위 20쌍 중에서 85%의 쌍이 실제적으로 질병과 바이오 마커 간의 관계를 파악하는 방향으로 진행 되고 있으나, 나머지 15%의 쌍에 대해서는 실질적인 연구가 잘 되고 있지 않은 것으로 파악되었다.

  • PDF

A Study of Efficiency Information Filtering System using One-Hot Long Short-Term Memory

  • Kim, Hee sook;Lee, Min Hi
    • International Journal of Advanced Culture Technology
    • /
    • 제5권1호
    • /
    • pp.83-89
    • /
    • 2017
  • In this paper, we propose an extended method of one-hot Long Short-Term Memory (LSTM) and evaluate the performance on spam filtering task. Most of traditional methods proposed for spam filtering task use word occurrences to represent spam or non-spam messages and all syntactic and semantic information are ignored. Major issue appears when both spam and non-spam messages share many common words and noise words. Therefore, it becomes challenging to the system to filter correct labels between spam and non-spam. Unlike previous studies on information filtering task, instead of using only word occurrence and word context as in probabilistic models, we apply a neural network-based approach to train the system filter for a better performance. In addition to one-hot representation, using term weight with attention mechanism allows classifier to focus on potential words which most likely appear in spam and non-spam collection. As a result, we obtained some improvement over the performances of the previous methods. We find out using region embedding and pooling features on the top of LSTM along with attention mechanism allows system to explore a better document representation for filtering task in general.

Developing an Alias Management Method based on Word Similarity Measurement for POI Application

  • Choi, Jihye;Lee, Jiyeong
    • 한국측량학회지
    • /
    • 제37권2호
    • /
    • pp.81-89
    • /
    • 2019
  • As the need for the integration of administrative datasets and address information increases, there is also growing interest in POI (Point of Interest) data as a source of location information across applications and platforms. The purpose of this study is to develop an alias database management method for efficient POI searching, based on POI data representing position. First, we determine the attributes of POI alias data as it is used variously by individual users. When classifying aliases of POIs, we excluded POIs in which the typo and names are all in English alphabet. The attributes of POI aliases are classified into four categories, and each category is reclassified into three classes according to the strength of the attributes. We then define the quality of POI aliases classified in this study through experiments. Based on the four attributes of POI defined in this study, we developed a method of managing one POI alias through and integrated method composed of word embedding and a similarity measurement. Experimental results of the proposed POI alias management method show that it is possible to utilize the algorithm developed in this study if there are small numbers of aliases in each POI with appropriate POI attributes defined in this study.

지식 임베딩 심층학습을 이용한 단어 의미 중의성 해소 (Word Sense Disambiguation Using Knowledge Embedding)

  • 오동석;양기수;김규경;황태선;임희석
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2019년도 제31회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.272-275
    • /
    • 2019
  • 단어 중의성 해소 방법은 지식 정보를 활용하여 문제를 해결하는 지식 기반 방법과 각종 기계학습 모델을 이용하여 문제를 해결하는 지도학습 방법이 있다. 지도학습 방법은 높은 성능을 보이지만 대량의 정제된 학습 데이터가 필요하다. 반대로 지식 기반 방법은 대량의 정제된 학습데이터는 필요없지만 높은 성능을 기대할수 없다. 최근에는 이러한 문제를 보완하기 위해 지식내에 있는 정보와 정제된 학습데이터를 기계학습 모델에 학습하여 단어 중의성 해소 방법을 해결하고 있다. 가장 많이 활용하고 있는 지식 정보는 상위어(Hypernym)와 하위어(Hyponym), 동의어(Synonym)가 가지는 의미설명(Gloss)정보이다. 이 정보의 표상을 기존의 문장의 표상과 같이 활용하여 중의성 단어가 가지는 의미를 파악한다. 하지만 정확한 문장의 표상을 얻기 위해서는 단어의 표상을 잘 만들어줘야 하는데 기존의 방법론들은 모두 문장내의 문맥정보만을 파악하여 표현하였기 때문에 정확한 의미를 반영하는데 한계가 있었다. 본 논문에서는 의미정보와 문맥정보를 담은 단어의 표상정보를 만들기 위해 구문정보, 의미관계 그래프정보를 GCN(Graph Convolutional Network)를 활용하여 임베딩을 표현하였고, 기존의 모델에 반영하여 문맥정보만을 활용한 단어 표상보다 높은 성능을 보였다.

  • PDF

다이내믹 토픽 모델링의 의미적 시각화 방법론 (Semantic Visualization of Dynamic Topic Modeling)

  • 연진욱;부현경;김남규
    • 지능정보연구
    • /
    • 제28권1호
    • /
    • pp.131-154
    • /
    • 2022
  • 최근 방대한 양의 텍스트 데이터에 대한 분석을 통해 유용한 지식을 창출하는 시도가 꾸준히 증가하고 있으며, 특히 토픽 모델링(Topic Modeling)을 통해 다양한 분야의 여러 이슈를 발견하기 위한 연구가 활발히 이루어지고 있다. 초기의 토픽 모델링은 토픽의 발견 자체에 초점을 두었지만, 점차 시기의 변화에 따른 토픽의 변화를 고찰하는 방향으로 연구의 흐름이 진화하고 있다. 특히 토픽 자체의 내용, 즉 토픽을 구성하는 키워드의 변화를 수용한 다이내믹 토픽 모델링(Dynamic Topic Modeling)에 대한 관심이 높아지고 있지만, 다이내믹 토픽 모델링은 분석 결과의 직관적인 이해가 어렵고 키워드의 변화가 토픽의 의미에 미치는 영향을 나타내지 못한다는 한계를 갖는다. 본 논문에서는 이러한 한계를 극복하기 위해 다이내믹 토픽 모델링과 워드 임베딩(Word Embedding)을 활용하여 토픽의 변화 및 토픽 간 관계를 직관적으로 해석할 수 있는 방안을 제시한다. 구체적으로 본 연구에서는 다이내믹 토픽 모델링 결과로부터 각 시기별 토픽의 상위 키워드와 해당 키워드의 토픽 가중치를 도출하여 정규화하고, 사전 학습된 워드 임베딩 모델을 활용하여 각 토픽 키워드의 벡터를 추출한 후 각 토픽에 대해 키워드 벡터의 가중합을 산출하여 각 토픽의 의미를 벡터로 나타낸다. 또한 이렇게 도출된 각 토픽의 의미 벡터를 2차원 평면에 시각화하여 토픽의 변화 양상 및 토픽 간 관계를 표현하고 해석한다. 제안 방법론의 실무 적용 가능성을 평가하기 위해 DBpia에 2016년부터 2021년까지 공개된 논문 중 '인공지능' 관련 논문 1,847건에 대한 실험을 수행하였으며, 실험 결과 제안 방법론을 통해 다양한 토픽이 시간의 흐름에 따라 변화하는 양상을 직관적으로 파악할 수 있음을 확인하였다.

효율적인 자동 주석을 위한 단어 임베딩 인공 신경 정리 증명계 구축 (Neural Theorem Prover with Word Embedding for Efficient Automatic Annotation)

  • 양원석;박한철;박종철
    • 정보과학회 논문지
    • /
    • 제44권4호
    • /
    • pp.399-410
    • /
    • 2017
  • 본 연구는 전문기관에서 생산되는 검증된 문서의 정보를 웹상의 수많은 검증되지 않은 문서에 자동 주석하여 신뢰도를 향상하고 심화 정보를 추가하는 시스템을 제안한다. 제안하는 시스템은 국가암정보센터의 검증된 문서들에서 추출한 19,304개 명제를 위키피디아 암 관련 문서에서 추출한 1,486개 명제에 주석하는 과제를 수행하기 위해, 기존 인공 신경 정리 증명계의 순환 모듈을 단어 임베딩 모듈로 교체하였다. 이를 통해 기존의 근본적인 문제점이었던 학습 시간 문제를 해결하였고, 동일한 환경에서 기존 시스템의 학습 시간이 233.9일로 추정된 것에 비해 재구축한 시스템은 102.1분 내로 학습이 완료되었다. 제안하는 시스템의 장점은 명제를 텐서로 인코딩하여 미분 가능하게 전체적인 연산을 진행하는 인공 신경 정리 증명계가 단어의 정확한 일치를 파악하는 전통적인 정리 증명계를 포함하며 동시에 유사어 관계로부터의 논리 전개 역시 가능하게 한다는 점을 실제 문서 데이터에서 입증했다는 것이다.

효율적 대화 정보 예측을 위한 개체명 인식 연구 (A Study on Named Entity Recognition for Effective Dialogue Information Prediction)

  • 고명현;김학동;임헌영;이유림;지민규;김원일
    • 방송공학회논문지
    • /
    • 제24권1호
    • /
    • pp.58-66
    • /
    • 2019
  • 대화 문장 내 고유명사와 같은 개체명에 대한 인식 연구는 효율적 대화 정보 예측을 위한 가장 기본적이며 중요한 연구 분야이다. 목적 지향 대화 시스템에서 가장 주요한 부분은 대화 내 객체가 어떤 속성을 가지고 있느냐 하는 것을 인지하는 것이다. 개체명 인식모델은 대화 문장에 대하여 전처리, 단어 임베딩, 예측 단계를 통해 개체명 인식을 진행한다. 본 연구는 효율적인 대화 정보 예측을 위해 전처리 단계에서 사용자 정의 사전을 이용하고 단어 임베딩 단계에서 최적의 파라미터를 발견하는 것을 목표로 한다. 그리고 설계한 개체명 인식 모델을 실험하기 위해 생활 화학제품 분야를 선택하고 관련 도메인 내 목적 지향 대화 시스템에서 적용 할 수 있는 개체명 인식 모델을 구축하였다.