• 제목/요약/키워드: Word embedding

검색결과 239건 처리시간 0.027초

도메인 온톨로지와 워드임베딩을 활용한 영상검색 시스템의 질의어 확장 (Query Expansion of Video Retrieval System using Domain Ontology and Word Embedding)

  • 함경준;곽창욱;김선중
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2017년도 하계학술대회
    • /
    • pp.245-247
    • /
    • 2017
  • 기존 콘텐츠를 활용 및 조합하여 새로운 콘텐츠를 제작하는 개인 사용자가 늘어나고 있는 추세다. 사용자가 원하는 내용이 담긴 영상 콘텐츠를 활용하기 위해서는 이를 지원하는 영상 검색 시스템이 필요하다. 하지만 기존의 영상 검색 시스템은 키워드 매칭을 기반으로 하고 있기 때문에 사용자가 원하는 영상을 찾지 못하는 경우가 많다. 본 연구에서는 이러한 문제를 해결하기 위해 사용자의 검색 의도를 보다 정확하게 표현할 수 있는 질의어 확장 방법을 제시하고 있다. 제시하는 방법은 도메인 온톨로지와 워드 임베딩 결과를 이용하여 질의어와 의미적으로 밀접히 관련된 단어를 추가하고 확장된 질의어를 이용하여 검색을 수행하게 된다. 이를 통해 사용자는 만족할만한 검색 결과를 얻을 수 있게 된다. 구현한 시스템을 이용하여 질의어가 확장되는 과정을 보임으로써 본 연구에서 제시하고 있는 방법에 대한 평가를 수행하였다.

  • PDF

격틀과 워드 임베딩을 활용한 유사도 기반 대화 모델링 (A Similarity-based Dialogue Modeling with Case Frame and Word Embedding)

  • 이호경;배경만;고영중
    • 한국어정보학회:학술대회논문집
    • /
    • 한국어정보학회 2016년도 제28회 한글및한국어정보처리학술대회
    • /
    • pp.220-225
    • /
    • 2016
  • 본 논문에서는 격틀과 워드 임베딩을 활용한 유사도 기반 대화 모델링을 제안한다. 기존의 유사도 기반 대화 모델링 방법은 형태소, 형태소 표지, 개체명, 토픽 자질, 핵심단어 등을 대화 말뭉치에서 추출하여 BOW(Bag Of Words) 자질로 사용하였기 때문에 입력된 사용자 발화에 포함된 단어들의 주어, 목적어와 같은 문장성분들의 위치적 역할을 반영할 수 가 없다. 또한, 의미적으로 유사하지만 다른 형태소를 가지는 문장 성분들의 경우 유사도 계산에 반영되지 않는 형태소 불일치 문제가 존재한다. 이러한 문제점을 해결하기 위해서, 위치적 정보를 반영하기 위한 문장성분 기반의 격틀과 형태소 불일치 문제를 해결하기 위한 워드 임베딩을 활용하여 개선된 유사도 기반 대화 모델링을 제안한다. 개선된 유사도 기반 대화 모델링은 MRR 성능 약 92%의 성능을 나타낸다.

  • PDF

심층적 의미 매칭을 이용한 cQA 시스템 질문 검색 (Question Retrieval using Deep Semantic Matching for Community Question Answering)

  • 김선훈;장헌석;강인호
    • 한국어정보학회:학술대회논문집
    • /
    • 한국어정보학회 2017년도 제29회 한글및한국어정보처리학술대회
    • /
    • pp.116-121
    • /
    • 2017
  • cQA(Community-based Question Answering) 시스템은 온라인 커뮤니티를 통해 사용자들이 질문을 남기고 답변을 작성할 수 있도록 만들어진 시스템이다. 신규 질문이 인입되면, 기존에 축적된 cQA 저장소에서 해당 질문과 가장 유사한 질문을 검색하고, 그 질문에 대한 답변을 신규 질문에 대한 답변으로 대체할 수 있다. 하지만, 키워드 매칭을 사용하는 전통적인 검색 방식으로는 문장에 내재된 의미들을 이용할 수 없다는 한계가 있다. 이를 극복하기 위해서는 의미적으로 동일한 문장들로 학습이 되어야 하지만, 이러한 데이터를 대량으로 확보하기에는 어려움이 있다. 본 논문에서는 질문이 제목과 내용으로 분리되어 있는 대량의 cQA 셋에서, 질문 제목과 내용을 의미 벡터 공간으로 사상하고 두 벡터의 상대적 거리가 가깝게 되도록 학습함으로써 의사(pseudo) 유사 의미의 성질을 내재화 하였다. 또한, 질문 제목과 내용의 의미 벡터 표현(representation)을 위하여, semi-training word embedding과 CNN(Convolutional Neural Network)을 이용한 딥러닝 기법을 제안하였다. 유사 질문 검색 실험 결과, 제안 모델을 이용한 검색이 키워드 매칭 기반 검색보다 좋은 성능을 보였다.

  • PDF

오타에 강건한 자모 조합 임베딩 기반 한국어 품사 태깅 (A typing error-robust Korean POS tagging using Hangul Jamo combination-based embedding)

  • 서대룡;정유진;강인호
    • 한국어정보학회:학술대회논문집
    • /
    • 한국어정보학회 2017년도 제29회 한글및한국어정보처리학술대회
    • /
    • pp.203-208
    • /
    • 2017
  • 본 논문은 한글 자모 조합 임베딩을 이용하여 오타에 강건한 한국어 품사 태깅 시스템을 구축하는 방법에 대해 기술한다. 최근 딥 러닝 연구가 활발히 진행되면서 자질을 직접 추출해야 하는 기존의 기계학습 방법이 아닌, 스스로 자질을 찾아서 학습하는 딥 러닝 모델을 이용한 연구가 늘어나고 있다. 본 논문에서는 다양한 딥 러닝 모델 중에서 sequence labeling에 강점을 갖고 있는 bidirectional LSTM CRFs 모델을 사용하였다. 한국어 품사 태깅 문제에서 일반적으로 사용되는 음절 임베딩은 약간의 오타에도 품사 태깅 성능이 크게 하락하는 한계가 있었다. 따라서 이를 개선하기 위해 본 논문에서는 한글 자모 임베딩 값을 조합시킨 음절 임베딩 방식을 제안하였다. 강제로 오타를 발생시킨 테스트 집합에서 실험한 결과, 자모 조합 임베딩 기법이 word2vec 음절 임베딩 방식에 비해 형태소 분할은 0.9%, 품사 태깅은 3.5% 우수한 성능을 기록하였다.

  • PDF

Bi-directional LSTM-CNN-CRF를 이용한 한국어 개체명 인식 시스템 (Korean Entity Recognition System using Bi-directional LSTM-CNN-CRF)

  • 이동엽;임희석
    • 한국어정보학회:학술대회논문집
    • /
    • 한국어정보학회 2017년도 제29회 한글및한국어정보처리학술대회
    • /
    • pp.327-329
    • /
    • 2017
  • 개체명 인식(Named Entity Recognition) 시스템은 문서에서 인명(PS), 지명(LC), 단체명(OG)과 같은 개체명을 가지는 단어나 어구를 해당 개체명으로 인식하는 시스템이다. 개체명 인식 시스템을 개발하기 위해 딥러닝 기반의 워드 임베딩(word embedding) 자질과 문장의 형태적 특징 및 기구축 사전(lexicon) 기반의 자질 구성 방법을 제안하고, bi-directional LSTM, CNN, CRF과 같은 모델을 이용하여 구성된 자질을 학습하는 방법을 제안한다. 실험 데이터는 2017 국어 정보시스템 경진대회에서 제공한 2016klpNER 데이터를 이용하였다. 실험은 전체 4258 문장 중 학습 데이터 3406 문장, 검증 데이터 426 문장, 테스트 데이터 426 문장으로 데이터를 나누어 실험을 진행하였다. 실험 결과 본 연구에서 제안하는 모델은 BIO 태깅 방식의 개체 청크 단위 성능 평가 결과 98.9%의 테스트 정확도(test accuracy)와 89.4%의 f1-score를 나타냈다.

  • PDF

한국어 음소열 기반 워드 임베딩 기술 (Korean Phoneme Sequence based Word Embedding)

  • 정의석;송화전;이성주;박전규
    • 한국어정보학회:학술대회논문집
    • /
    • 한국어정보학회 2017년도 제29회 한글및한국어정보처리학술대회
    • /
    • pp.225-227
    • /
    • 2017
  • 본 논문은 한국어 서브워드 기반 워드 임베딩 기술을 다룬다. 미등록어 문제를 가진 기존 워드 임베딩 기술을 대체할 수 있는 새로운 워드 임베딩 기술을 한국어에 적용하기 위해, 음소열 기반 서브워드 자질 검증을 진행한다. 기존 서브워드 자질은 문자 n-gram을 사용한다. 한국어의 경우 특정 단음절 발음은 단어에 따라 달라진다. 여기서 음소열 n-gram은 특정 서브워드 자질의 변별력을 확보할 수 있다는 장점이 있다. 본 논문은 서브워드 임베딩 기술을 재구현하여, 영어 환경에서 기존 워드 임베딩 사례와 비교하여 성능 우위를 확보한다. 또한, 한국어 음소열 자질을 활용한 실험 결과에서 의미적으로 보다 유사한 어휘를 벡터 공간상에 근접시키는 결과를 보여 준다.

  • PDF

문장 정보를 고려한 딥 러닝 기반 자동 띄어쓰기의 개념 및 활용 (Concept and Application of Deep learning-based Automatic Spacing)

  • 조원익;천성준;김지원;김남수
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2018년도 제30회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.181-184
    • /
    • 2018
  • 본 논문에서는, 한국어 활용에 있어 중의성을 해소해 주고 심미적 효과를 줄 수 있는 개념인 띄어쓰기를, 교정이 아닌 입력 보조의 관점에서 접근한다. 사람들에게 자판을 통한 텍스트 입력이 언어활동의 보편적인 수단이 되면서 가독성을 포기하고서라도 편의를 택하는 경우가 증가하게 되었는데, 본 연구에서는 그러한 문장들의 전달력을 높여 줄 수 있는 자동 띄어쓰기 및 그 활용 방안을 제시한다. 전체 시스템은 dense word embedding과 딥 러닝 아키텍쳐를 활용하여 훈련되었으며, 사용된 코퍼스는 비표준어 및 비정형을 포함하는 대화체 문장으로 구성되어 user-generate된 대화형 문장 입력의 처리에 적합하다.

  • PDF

침 요법을 통한 국내 비만치료의 최근 경향 (Acupuncture Therapy of the Obesity - Current Status in Korea and Recent Developments)

  • 염승철
    • 동의생리병리학회지
    • /
    • 제23권3호
    • /
    • pp.548-553
    • /
    • 2009
  • In this study, after we analyzed 44 recent research paper written about obesity treatement, we tried to understand the acupuncture on the obesity treatment of the recent trend. We searched the recent papers with the key word of obesity, obese, and Acupuncture and are limited since 2004 in the search site KISS, KSI. Recently, acupuncture application for obesity treatment were 6 type. Traditional Acupuncture, Auricular Acupuncture, Electro Acupuncture, Herbal Acupuncture, Chi Acupuncture, and Acupoint Catgut Embedding Therapy. Although acupuncture application were effective method to decrease weight and localized fat, they were critical to evaluate to their effectiveness through strict and scientific clinical trials.

KAISER: 워드 임베딩 기반 개체명 어휘 자가 학습 방법을 적용한 개체명 인식기 (KAISER: Named Entity Recognizer using Word Embedding-based Self-learning of Gazettes)

  • 함영균;최동호;최기선
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2016년도 제28회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.337-339
    • /
    • 2016
  • 본 논문에서는 한국어 개체명 인식의 성능 향상을 위하여 워드 임베딩을 활용할 수 있는 방법에 대하여 기술한다. 워드 임베딩이란 문장의 단어의 공기정보를 바탕으로 그 단어의 의미를 벡터로 표현하는 분산표현이다. 이러한 분산 표현은 단어 간의 유의미한 정도를 계산하는데 유용하다. 본 논문에서는 이러한 워드 임베딩을 통하여 단어 벡터들의 코사인 유사도를 통한 개체명 사전 자가 학습 및 매칭 방법을 적용하고, 그 실험 결과를 보고한다.

  • PDF

격틀과 워드 임베딩을 활용한 유사도 기반 대화 모델링 (A Similarity-based Dialogue Modeling with Case Frame and Word Embedding)

  • 이호경;배경만;고영중
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2016년도 제28회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.220-225
    • /
    • 2016
  • 본 논문에서는 격틀과 워드 임베딩을 활용한 유사도 기반 대화 모델링을 제안한다. 기존의 유사도 기반 대화 모델링 방법은 형태소, 형태소 표지, 개체명, 토픽 자질, 핵심단어 등을 대화 말뭉치에서 추출하여 BOW(Bag Of Words) 자질로 사용하였기 때문에 입력된 사용자 발화에 포함된 단어들의 주어, 목적어와 같은 문장성분들의 위치적 역할을 반영할 수 가 없다. 또한, 의미적으로 유사하지만 다른 형태소를 가지는 문장 성분들의 경우 유사도 계산에 반영되지 않는 형태소 불일치 문제가 존재한다. 이러한 문제점을 해결하기 위해서, 위치적 정보를 반영하기 위한 문장성분 기반의 격틀과 형태소 불일치 문제를 해결하기 위한 워드임베딩을 활용하여 개선된 유사도 기반 대화 모델링을 제안한다. 개선된 유사도 기반 대화 모델링은 MRR 성능 약 92%의 성능을 나타낸다.

  • PDF