• 제목/요약/키워드: Word clustering

검색결과 190건 처리시간 0.029초

논문 검색 결과의 효과적인 브라우징을 위한 단어 군집화 기반의 결과 내 군집화 기법 (A Search-Result Clustering Method based on Word Clustering for Effective Browsing of the Paper Retrieval Results)

  • 배경만;황재원;고영중;김종훈
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제37권3호
    • /
    • pp.214-221
    • /
    • 2010
  • 검색 결과 내 군집화(search-result clustering)는 검색 엔진으로부터 검색된 결과 내에서 비슷한 문서를 자동으로 군집화하는 기법이다. 본 논문에서는 논문 검색 서비스에 전문화된 새로운 결과 내 군집화 기법을 제안한다. 제안하는 시스템은 '범주체계생성기(Category Hierarchy Generation System)'와 '논문군집기(Paper Clustering System)'로 구성되어있다. '범주체계생생기'는 KOSEF의 연구 범주 체계를 이용하여 분야 시소러스라 불리는 범주 체계를 생성하고, K-means 알고리즘을 이용한 단어 군집화 알고리즘을 사용하여 분야 시소러스의 키워드 집합을 확장한다. '논문군집기'는 top-down 방식과 bottom-up 방식을 이용하여 각 논문의 범주를 결정한다. 제안하는 시스템은 논문 검색 서비스와 같은 전문 분야에 대한 검색 서비스에 유용하게 사용될 수 있을 것이다.

음성학적 지식 기반 변이음 모델을 이용한 가변 어휘 단어 인식기 (Variable Vocabulary Word Recognizer using Phonetic Knowledge-based Allophone Model)

  • 김회린;이항섭
    • 한국음향학회지
    • /
    • 제16권2호
    • /
    • pp.31-35
    • /
    • 1997
  • 본 논문에서는 훈련용 음성 데이터와 무관한 임의의 새로운 어휘를 인식해 낼 수 있는 가변 어휘 단어 인식기 개발에 대하여 기술한다. 가변 어휘 단어 인식기를 구현하기 위해서는, 인식 대상이 될 새로운 어휘를 즉시 발음 사전으로 변환시키는 on-line 발음 사전 생성기가 필요하고, 발음 사전 출력을 가지고 각 단어를 모델링할 수 있는 신뢰성 있는 음소 및 변이음 모델이 필요하다. 이와 같은 신뢰성 있는 음소 및 변이음 모델은 생성시키기 위하여 본 연구에서는, 각 음소의 전후 음소들의 음성학적 자질을 고려하여 3 음소열을 집단화(clustering)하여 변이음을 정의하고 이를 당 연구실이 보유하고 있는 POW(Phonetically Optimized Words) 3,848개 단어에 적용하여 1,548개의 변이음 모델을 생성시켰다. 이를 토대로 가변 어휘 단어 인식기를 구현하고 이를 POW 3,848 DB, PBW 445 DB 및 호텔 예약용 244 단어 DB 등에 적용하여 그 성능을 평가하였다. 평가 결과, POW DB에 대해서는 79.6%, PBW DB에 대해서는 445 단어 사전의 경우 79.4%, 100 단어 사전의 경우 88.9%의 성능을 보여 주었고, 호텔 예약 DB에 대해서는 71.4%의 성능을 보여 주었다.

  • PDF

단어빈도와 동시링크의 결합을 통한 웹 문서 클러스터링 성능 향상에 관한 연구 (Clustering of Web Document Exploiting with the Union of Term frequency and Co-link in Hypertext)

  • 이교운;이원희;박흠;김영기;권혁철
    • 한국도서관정보학회지
    • /
    • 제34권3호
    • /
    • pp.211-229
    • /
    • 2003
  • 이 연구에서는 웹 문서가 갖고 있는 특성, 특히 웹 문서에 포함된 단어 수가 클러스터링 성능에 결정적인 영향을 미친다는 전제 하에, 웹 문서에 포함된 단어 수와 클러스터링 성능과의 관계를 밝힌 다음, 이 부분을 웹 문서의 동시인용 빈도를 이용해 보완할 수 있는 알고리즘을 제시한다. 이 연구에서는 네이버 디렉터리 중 '자연과학' 법주에 포함된 1,449개의 웹 문서를 대상으로 단어기반 클러스터링과 링크기반 클러스터링, 그리고 단어-링크 혼합 클러스터링 기법으로 클러스터링 해 보았으며, 그 결과를 네이버 디렉터리에 초기 할당된 법주와 비교해 보았다.

  • PDF

Combining Distributed Word Representation and Document Distance for Short Text Document Clustering

  • Kongwudhikunakorn, Supavit;Waiyamai, Kitsana
    • Journal of Information Processing Systems
    • /
    • 제16권2호
    • /
    • pp.277-300
    • /
    • 2020
  • This paper presents a method for clustering short text documents, such as news headlines, social media statuses, or instant messages. Due to the characteristics of these documents, which are usually short and sparse, an appropriate technique is required to discover hidden knowledge. The objective of this paper is to identify the combination of document representation, document distance, and document clustering that yields the best clustering quality. Document representations are expanded by external knowledge sources represented by a Distributed Representation. To cluster documents, a K-means partitioning-based clustering technique is applied, where the similarities of documents are measured by word mover's distance. To validate the effectiveness of the proposed method, experiments were conducted to compare the clustering quality against several leading methods. The proposed method produced clusters of documents that resulted in higher precision, recall, F1-score, and adjusted Rand index for both real-world and standard data sets. Furthermore, manual inspection of the clustering results was conducted to observe the efficacy of the proposed method. The topics of each document cluster are undoubtedly reflected by members in the cluster.

한국어 연결숫자인식을 위한 숫자 모델링에 관한 연구 (A Study on Digit Modeling for Korean Connected Digit Recognition)

  • 김기성
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1998년도 제15회 음성통신 및 신호처리 워크샵(KSCSP 98 15권1호)
    • /
    • pp.293-297
    • /
    • 1998
  • 전화망에서의 연결 숫자 인식 시스템의 개발에 대한 내용을 다루며, 이 시스템에서 다양한 숫자 모델링 방법들을 구현하고 비겨하였다. Word 모델의 경우 문맥독립 whole-word 모델을 구현하였으며, sub-word 모델로는 triphone 모델과 불파음화 자음을 모음에 포함시킨 modified triphone 모델을 구현하였다. 그리고 tree-based clustering 방법을 sub-word 모델과 문맥종속 whole-word 모델에 적용하였다. 이와 같은 숫자모델들에 대해 연속 HMM을 이용하여 화자독립 연결숫자 인식 실험을 수행한 결과, 문맥종속 단어 모델이 문맥독립 단어 모델보다 우수한 성능을 나타냈으며, triphone 모델과 modified triphone 모델은 유사한 성능을 나타냈다. 특히 tree-based clustering 방법을 적용한 문맥종속 단어 모델이 4연 숫자열에 대해 99.8%의 단어 dsltlr률 및 99.1%의 숫자열 인식률로서 가장 우수한 성능을 나타내었다.

  • PDF

Sentence model based subword embeddings for a dialog system

  • Chung, Euisok;Kim, Hyun Woo;Song, Hwa Jeon
    • ETRI Journal
    • /
    • 제44권4호
    • /
    • pp.599-612
    • /
    • 2022
  • This study focuses on improving a word embedding model to enhance the performance of downstream tasks, such as those of dialog systems. To improve traditional word embedding models, such as skip-gram, it is critical to refine the word features and expand the context model. In this paper, we approach the word model from the perspective of subword embedding and attempt to extend the context model by integrating various sentence models. Our proposed sentence model is a subword-based skip-thought model that integrates self-attention and relative position encoding techniques. We also propose a clustering-based dialog model for downstream task verification and evaluate its relationship with the sentence-model-based subword embedding technique. The proposed subword embedding method produces better results than previous methods in evaluating word and sentence similarity. In addition, the downstream task verification, a clustering-based dialog system, demonstrates an improvement of up to 4.86% over the results of FastText in previous research.

단어 군집 기반 모바일 애플리케이션 범주화 (Word Cluster-based Mobile Application Categorization)

  • 허정만;박소영
    • 한국컴퓨터정보학회논문지
    • /
    • 제19권3호
    • /
    • pp.17-24
    • /
    • 2014
  • 본 논문에서는 단어 군집 정보를 활용하여 모바일 애플리케이션의 범주를 분류하는 방법을 제안한다. 제안하는 방법은 모바일 애플리케이션 설명이 짧을 수 있다는 점을 고려하여, 모바일 애플리케이션 설명에 포함된 단어 정보 뿐만 아니라 각 단어의 단어 군집 대표 정보를 범주화 자질로 활용한다. 그리고, 모바일 애플리케이션의 카테고리가 세분화되어 있으므로, 제안하는 방법은 범주별 단어 발생 빈도를 K 평균 군집화 알고리즘에 적용하여 단어 군집을 생성한다. 모바일 애플리케이션 설명이 설치사양과 같이 범주와 관련없는 내용이 있을 수 있다는 점을 반영하여, 제안하는 방법은 단어 군집 중에서 범주화에 유용한 일부 단어 군집만을 선별하여 활용한다. 실험결과 제안하는 방법은 단어 군집 정보를 활용하여 모바일 애플리케이션 범주화 재현율을 5.65% 개선시켰다.

Empirical Comparison of Word Similarity Measures Based on Co-Occurrence, Context, and a Vector Space Model

  • Kadowaki, Natsuki;Kishida, Kazuaki
    • Journal of Information Science Theory and Practice
    • /
    • 제8권2호
    • /
    • pp.6-17
    • /
    • 2020
  • Word similarity is often measured to enhance system performance in the information retrieval field and other related areas. This paper reports on an experimental comparison of values for word similarity measures that were computed based on 50 intentionally selected words from a Reuters corpus. There were three targets, including (1) co-occurrence-based similarity measures (for which a co-occurrence frequency is counted as the number of documents or sentences), (2) context-based distributional similarity measures obtained from a latent Dirichlet allocation (LDA), nonnegative matrix factorization (NMF), and Word2Vec algorithm, and (3) similarity measures computed from the tf-idf weights of each word according to a vector space model (VSM). Here, a Pearson correlation coefficient for a pair of VSM-based similarity measures and co-occurrence-based similarity measures according to the number of documents was highest. Group-average agglomerative hierarchical clustering was also applied to similarity matrices computed by individual measures. An evaluation of the cluster sets according to an answer set revealed that VSM- and LDA-based similarity measures performed best.

문장구조 유사도와 단어 유사도를 이용한 클러스터링 기반의 통계기계번역 (Clustering-based Statistical Machine Translation Using Syntactic Structure and Word Similarity)

  • 김한경;나휘동;이금희;이종혁
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제37권4호
    • /
    • pp.297-304
    • /
    • 2010
  • 통계기계번역에서 번역성능의 향상을 위해서 문장의 유형이나 장르에 따라 클러스터링을 수행하여 도메인에 특화된 번역을 시도하는 방법이 있다. 그러나 기존의 연구 중 문장의 유형 정보와 장르에 따른 정보를 동시에 사용한 경우는 없었다. 본 논문에서는 각 문장의 문법적 구조 유사도에 따른 유형별분류 기법과, 단어 유사도 정보를 사용한 장르 구분법을 적용하여 기존의 두 기법을 통합하였다. 이렇게 분류된 말뭉치에서 추출한 도메인 특화 모델과 전체 말뭉치에서 추출된 모델에서 보간법(interpolation)을 사용하여 통계기계번역의 성능을 향상하였다. 문장구조 유사도와 단어 유사도의 계산 방법으로는 각각 커널과 코사인 유사도를 적용하였으며, 두 유사도를 적용하여 말뭉치를 분류하는 과정에서는 K-Means 알고리즘과 유사한 기계학습 기법을 사용하였다. 이를 일본어-영어의 특허문서에서 실험한 결과 최선의 경우 약 2.5%의 상대적인 성능 향상을 얻었다.

LPC Cepstrum과 집단화를 이용한 한국어 고립단어 인식에 관한 연구 (A Study on Korean isolated word recognition using LPC cepstrum and clustering)

  • 김진영;성굉모
    • 한국음향학회지
    • /
    • 제6권4호
    • /
    • pp.44-54
    • /
    • 1987
  • 본 논문은 화자독립 고립단어 인식에 있어서 LP모델의 문제점과 그 해결 방안으로서 cepstrum영역에 있어서 lifter를 이용한 해결에 대해서 고찰하였다. 한편, 각 인식 단어의 기준 패턴을 구하기 위한 방법으로서 집단화의 방법에 대해 논하였다. 집단화의 방법으로서는 UWA방법과 K-iteration방법을 변형시킨 KMA 방법을 제시 비교하였다. 인식실험결과 정현파 lifter와 KMA의 집단화 방법을 사용하였을 때 $95\%$의 최고 인식률을 보였다.

  • PDF