• 제목/요약/키워드: Word Cloud Technique

검색결과 33건 처리시간 0.018초

텍스트 마이닝 알고리즘을 이용한 기상청 기상연감 자료 분석 (Analysis of the Yearbook from the Korea Meteorological Administration using a text-mining agorithm)

  • 선현석;임창원;이영섭
    • 응용통계연구
    • /
    • 제30권4호
    • /
    • pp.603-613
    • /
    • 2017
  • 최근 들어 많은 사람들이 자신의 관심사를 SNS에 게시하거나 인터넷과 컴퓨터의 기술 발달로 디지털 형태의 문서저장이 가능하게 됨으로써 생성되는 텍스트 자료의 양이 폭발적으로 증가하게 되었다. 이에 따라 수많은 문서 자료로부터 가치 있는 정보를 창출하기 위한 기술의 요구 또한 증가하고 있다. 그러나 대부분 비정형 형태로 구성되어 있는 텍스트 기반의 자료는 기존의 통계 분석이나 데이터 마이닝 기법을 적용하기에 부적합하기 때문에 텍스트 마이닝 기법이 사용되고 있다. 본 연구에서는 비정형 자료 분석 기법 중 하나인 텍스트 마이닝 기법으로 기상청 기상연감 자료를 분석하였다. 먼저 전처리 과정을 통하여 용어사전을 구축하고, 용어-문서 행렬을 생성하였다. 그리고 이것을 사용하여 연도별 용어 빈도수를 계산하고, 자주 나타나는 단어들에 대하여 상대도수의 변화를 관찰하였다. 또한 회귀 분석 기법을 사용하여 증가추세와 감소추세를 보이는 용어들을 파악하였다. 이러한 분석으로 기상청 기상연감 문서에서의 트렌드를 파악하고, 이를 통해 이슈가 되었던 기상 관련 소식과 기상현황, 그리고 기상청이 중점으로 하고 있는 업무 현황의 트렌드를 파악하였다. 본 연구를 통해 기상업무 분석 및 효율화에 도움을 주고 기상정책에 반영할 수 있는 유용한 정보를 이끌어내고자 하였다.

텍스트마이닝 기법을 활용한 교육관점에서의 메타버스 관련 이슈 탐색 - 뉴스 빅데이터를 중심으로 (Exploring Issues Related to the Metaverse from the Educational Perspective Using Text Mining Techniques - Focusing on News Big Data)

  • 박주연;정도헌
    • 산업융합연구
    • /
    • 제20권6호
    • /
    • pp.27-35
    • /
    • 2022
  • 본 연구는 뉴스 빅데이터에 나타난 메타버스 관련 이슈들을 교육관점에서 분석하여 그 특징을 탐색하고, 메타버스의 교육적 활용가능성 및 미래교육에 대한 시사점을 제공하는데 목적이 있다. 이를 위해 포털사이트에서 검색되는 메타버스 관련 뉴스 데이터를 41,366건 수집하였고, 대표적인 용어 가중치 모델인 TF-IDF를 이용하여 추출된 모든 키워드의 가중치 값을 계산하여 순위화한 후, 워드클라우드로 시각화 분석을 수행하였다. 또한 정교한 확률기반 텍스트마이닝 기법인 토픽모델링(LDA)을 활용하여 주요 토픽들을 분석하였다. 연구결과 교육관점에서 메타버스의 핵심 이슈로는 플랫폼 산업, 미래인재, 기술의 확산 등과 같은 주제가 도출되었다. 또한, 기술, 직업, 교육이라는 세 개의 핵심 주제로 2차 데이터 분석을 실시한 결과 미래교육에서 메타버스는 교육플랫폼의 혁신, 미래 직업의 혁신, 미래 역량의 혁신과 관련한 이슈를 갖는 것으로 나타났다. 본 연구는 방대한 양의 뉴스 빅데이터를 단계적으로 분석하여 교육관점에서 이슈를 도출하고 미래교육에 대한 시사점을 제공하였다는 데 의의가 있다.

소셜미디어 콘텐츠의 오피니언 마이닝결과 시각화: N라면 사례 분석 연구 (Visualizing the Results of Opinion Mining from Social Media Contents: Case Study of a Noodle Company)

  • 김유신;권도영;정승렬
    • 지능정보연구
    • /
    • 제20권4호
    • /
    • pp.89-105
    • /
    • 2014
  • Web2.0의 등장과 함께 급속히 발전해온 온라인 포럼, 블로그, 트위터, 페이스북과 같은 소셜 미디어 서비스는 소비자와 소비자간의 의사소통을 넘어 이제 기업과 소비자 사이의 새로운 커뮤니케이션 매체로도 인식되고 있다. 때문에 기업뿐만 아니라 수많은 기관, 조직 등에서도 소셜미디어를 활용하여 소비자와 적극적인 의사소통을 전개하고 있으며, 나아가 소셜 미디어 콘텐츠에 담겨있는 소비자 고객들의 의견, 관심, 불만, 평판 등을 분석하고 이해하며 비즈니스에 적용하기 위해 이를 적극 분석하는 단계로 진화하고 있다. 이러한 연구의 한 분야로서 비정형 텍스트 콘텐츠와 같은 빅 데이터에서 저자의 감성이나 의견 등을 추출하는 오피니언 마이닝과 감성분석 기법이 소셜미디어 콘텐츠 분석에도 활발히 이용되고 있으며, 이미 여러 연구에서 이를 위한 방법론, 테크닉, 툴 등을 제시하고 있다. 그러나 아직 대량의 소셜미디어 데이터를 수집하여 언어처리를 거치고 의미를 해석하여 비즈니스 인사이트를 도출하는 전반의 과정을 제시한 연구가 많지 않으며, 그 결과를 의사결정자들이 쉽게 이해할 수 있는 시각화 기법으로 풀어내는 것 또한 드문 실정이다. 그러므로 본 연구에서는 소셜미디어 콘텐츠의 오피니언 마이닝을 위한 실무적인 분석방법을 제시하고 이를 통해 기업의사결정을 지원할 수 있는 시각화된 결과물을 제시하고자 하였다. 이를 위해 한국 인스턴트 식품 1위 기업의 대표 상품인 N-라면을 사례 연구의 대상으로 실제 블로그 데이터와 뉴스를 수집/분석하고 결과를 도출하였다. 또한 이런 과정에서 프리웨어 오픈 소스 R을 이용함으로써 비용부담 없이 어떤 조직에서도 적용할 수 있는 레퍼런스를 구현하였다. 그러므로 저자들은 본 연구의 분석방법과 결과물들이 식품산업뿐만 아니라 타 산업에서도 바로 적용 가능한 실용적 가이드와 참조자료가 될 것으로 기대한다.