• 제목/요약/키워드: Wood products manufacturing

검색결과 97건 처리시간 0.024초

목타르계 페놀접착제의 제조 및 접착성능 (Manufacture of Wood Tar-based Phenol Adhesives and Adhesive Properties)

  • 박상범;김수원;박병대;한태형;강은창;박종영;문성필
    • 임산에너지
    • /
    • 제24권1호
    • /
    • pp.33-38
    • /
    • 2005
  • 목탄의 제조과정에서 발생되는 목타르의 신용도를 찾고자 목타르를 이용한 레졸형 페놀수지접착제를 제조하여, 합판에 대한 접착력 시험을 실시하였다. 소나무타르계 접착제는 미첨가 페놀접착제와 비교했을 때, 고형분, 점도와 같은 수지의 물성은 유사하였으며, 인장 전단 접착력에서도 비내수, 내수 모두 페놀접착제에 비해 크게 떨어지지 않았다. 그러나, 참나무타르계 접착제의 경우에서는 수지물성도 페놀수지와는 다른 물성을 보였으며, 내수접착력은 페놀접착제의 접착력에 비해 절반 정도의 낮은 접착력을 보였다. 포름알데히드 방출량은 목타르의 첨가량이 많을수록 많이 방출되었다.

  • PDF

Analysis on Wood Quality, Geometry Factor, and Their Effects on Lathe Check of Samama (Anthocephalus macrophyllus) Veneer

  • Cahyono, Tekat Dwi;Wahyudi, Imam;Priadi, Trisna;Febrianto, Fauzi;Bahtiar, Effendi Tri;Novriyanti, Eka
    • Journal of the Korean Wood Science and Technology
    • /
    • 제44권6호
    • /
    • pp.828-841
    • /
    • 2016
  • Relatively little information is available regarding the correlation between wood and veneer quality, especially for Samama wood, an endemic wood species in eastern Indonesia. This study addresses the quality of 8 years old Samama wood and its effect on the veneer quality. Samama wood quality was determined by evaluating its specific gravity, moisture content, fiber dimensions, and microfibril angle from pith toward bark. Meanwhile, veneer quality was assessed by examining veneer thickness and lathe check characteristics. Geometry factor model was constructed to elaborate the quantities of lathe check from pith toward bark. Results show that fair variations of veneer thickness, ranging from 1.5 mm to 3.0 mm, could be obtained from Samama wood. The quantity, depth, and length of lathe check were noticeably decreasing toward bark. Further, in the same manufacturing process, geometry factor was determined as the dominant factor over other wood properties in affecting the frequency of lathe checks from pith towards bark. These facts should be put into consideration in producing veneer from Samama wood. Moreover, these results enlighten the potential of Samama wood as plywood and other excellent veneer-based products.

CNC를 이용한 목제품 디자인 기법에 관한 연구 (A Study on Design Method Using CNC in Wooden Products)

  • 이영춘
    • 한국가구학회지
    • /
    • 제28권4호
    • /
    • pp.371-379
    • /
    • 2017
  • This study established the scope of the main contents and interpretation of wooden product design using the CNC manufacturing technology as well as the basic concepts of which were defined, accordingly. After coming up with the definition of the CNC wood manufacturing technology from the academic point of view, a design study, using the practical CNC manufacturing technology, was conducted by analyzing and summarizing the contents of each process. In addition, data research and analysis including review on literatures and case studies of existing products were promoted besides design development through application of the design concepts, ergonomics, principle of molding, etc. Ultimately, this study suggested the step-by-step procedure in design drawing, 3D modeling, CAD/CAM data production, CNC manufacturing, and prototype completion together with figures. Through this, the study proposed a standard manufacturing guideline for wood product design using digital manufacturing technology. Base on such efforts, the advantages and points for improvement in product design using CNC manufacturing technology and the future direction of development were forwarded. Meanwhile, a prototype image that was developed through collaborative efforts between the academic circle and field workers was presented to help the case study on the wooden product design technique using CNC.

CuAz-3처리 리기다소나무 제재목을 이용한 구조용 집성재 성능 평가 (Performance of Structural Glulam Laminated with CuAz-3 Preservative Treated Lumber)

  • 김광모;엄창득;이상준
    • Journal of the Korean Wood Science and Technology
    • /
    • 제39권6호
    • /
    • pp.521-530
    • /
    • 2011
  • 구조용 집성재의 시장 수요가 확대되고 다양화되면서 교량이나 파고라와 같이 외기에 노출되는 조건에서 사용하기 위한 고 내구성 구조용 집성재에 대한 시장 요구가 증가할 것으로 예견된다. 따라서 본 연구는 국산 침엽수재로 제조되는 구조용 집성재에 적합한 방부처리 기술 및 기준을 개발하기 위한 목적으로 진행되었다. 본 연구에서는 방부처리된 국산 리기다소나무 제재목을 이용하여 구조용 집성재를 제조하고 제조 단계별 생산수율과 KS 품질기준 충족여부를 평가하였다. 방부집성재의 제조수율은 일반 집성재와 큰 차이를 나타내지 않았으며, 목재자원의 효율적인 활용을 위해서는 집성재 제조수율 향상방안과 함께 부산물에 대한 효율적 활용방안도 함께 검토되어야 한다. 리기다소나무 방부처리재의 경우 불균일한 방부약제 흡수량으로 인하여 구조용 집성재 제조용으로 적합하지 않은 것으로 확인되었으며, 집성재 제조 후에 유용성 방부제를 처리하는 방안에 대한 추가적인 검토가 요구되었다.

바이오복합재료 제조 공정시 제조온도 및 시간에 의한 영향 평가 (Evaluation of the Impact on Manufacturing Temperature and Time in the Production Process of Bio-composites)

  • 박상용;한규성;김희수;양한승;김현중
    • Journal of the Korean Wood Science and Technology
    • /
    • 제33권1호통권129호
    • /
    • pp.29-37
    • /
    • 2005
  • 본 연구는 바이오복합재(bio-composites) 제조시 제조온도와 시간이 기질인 열가소성 고분자와 충전제인 왕겨분말에 미치는 영향을 평가하기 위하여 수행하였다. 제조온도가 왕겨분말에 미치는 영향에 대해 알아보기 위해 왕겨분말을 $220^{\circ}C$에서 10분부터 2시간 동안 처리한 후 열가소성 고분자인 polypropylene (PP)과 low-density polyethylene (LDPE)에 충전제로 첨가하여 바이오복합재를 제조한 후 기계적 성질을 측정하였다. $220^{\circ}C$에서 왕겨분말의 처리시간이 증가할수록 왕겨분말의 주요 구성성분이 열분해로 인하여 인장강도와 충격강도값이 감소하였다. 실제적인 제조온도에 의한 중량감소를 측정하기 위하여 열중량분석기(thermogravimetric analysis, TGA)를 이용하여 $220^{\circ}C$의 등온상태에서 2시간 동안 측정한 결과 열가소성고분자에서는 중량의 변화가 거의 발생하지 않았으며 충전제인 왕겨분말과 바이오복합재의 경우 시간이 증가할수록 열분해에 의한 중량감소량이 증가하는 것을 확인할 수 있었다. 그러므로 바이오복합재 제조시 높은 제조온도로 인한 물성의 저하를 방지하기 위해서는 적절한 온도와 제조시간을 결정하는 것이 중요하다고 볼 수 있다.

Thermogravimetric Analysis of Rice Husk Flour for a New Raw Material of Lignocellulosic Fiber-Thermoplastic Polymer Composites

  • Kim, Hyun-Joong;Eom, Young-Guen
    • Journal of the Korean Wood Science and Technology
    • /
    • 제29권3호
    • /
    • pp.59-67
    • /
    • 2001
  • Rice husk flours were analyzed by chemical composition and thermogravimetric methods in nitrogen atmosphere to discuss its feasibility as a raw material for manufacturing agricultural lignocellulosic fiber-thermoplastic polymer composite. It was revealed in the chemical composition analysis that rice husk flour was composed of moisture, 5.0%; lignin, 21.6%; holocellulose, 60.8%; ash, 12.6%. In the thermogravimetric analysis (TGA), thermal decomposition behavior of rice husk flour from room temperature to $350^{\circ}C$ was similar to that of wood flour, but rice husk flour was more thermally stable from 350 to $800^{\circ}C$ than wood flour because of higher silica content in the rice husk flour and smaller particle size of rice husk flour. The activation energy of thermal decomposition was evaluated using Flynn & Wall expression. As the thermal decomposition proceeded in rice husk flour, the activation energy of thermal decomposition appeared almost constant up to ${\alpha}=0.25$, but thereafter increased. Activation energy of thermal decomposition in wood flour, however, decreased steeply up to ${\alpha}=0.3$, but thereafter remained almost constant. From the results, rice husk flour was thought be a substitute for wood flour in manufacturing agricultural lignocellulosic fiber-thermoplastic polymer composite in the aspect of thermal decomposition.

  • PDF

Mining Information in Automated Relational Databases for Improving Reliability in Forest Products Manufacturing

  • Young, Timothy M.;Guess, Frank M.
    • International Journal of Reliability and Applications
    • /
    • 제3권4호
    • /
    • pp.155-164
    • /
    • 2002
  • This paper focuses on how modem data mining can be integrated with real-time relational databases and commercial data warehouses to improve reliability in real-time. An important Issue for many manufacturers is the development of relational databases that link key product attributes with real-time process parameters. Helpful data for key product attributes in manufacturing may be derived from destructive reliability testing. Destructive samples are taken at periodic time intervals during manufacturing, which might create a long time-gap between key product attributes and real-time process data. A case study is briefly summarized for the medium density fiberboard (MDF) industry. MDF is a wood composite that is used extensively by the home building and furniture manufacturing industries around the world. The cost of unacceptable MDF was as large as 5% to 10% of total manufacturing costs. Prevention can result In millions of US dollars saved by using better Information systems.

  • PDF

리기다소나무의 구조용 집성재 이용기술 개발 -낙엽송 층재와의 혼합 구성을 통한 집성재의 휨성능 향상- (Development of Pitch Pine Glued Laminated Timber for Structural Use -Improvement of Bending Capacity of Pitch Pine Glulam by Using Domestic Larch Laminars-)

  • 김광모;심국보;박주생;김운섭;임진아;여환명
    • Journal of the Korean Wood Science and Technology
    • /
    • 제35권6호
    • /
    • pp.13-22
    • /
    • 2007
  • 주요 조림수종으로 도입 식재된 리기다소나무의 고부가가치 이용을 위한 구조용 집성재 이용 가능성을 검토하고, 이에 적합한 기술을 개발하기 위하여 본 연구를 수행하였다. 국산 리기다소나무 제재목의 기계응력등급은 대부분 E7에서 E9등급으로 집성재 제조에는 다소 불량한 것으로 나타났다. 반면 단일수종 및 혼합수종 구조용 집성재 제조에 필수적인 리기다소나무 및 낙엽소 판재의 접착성을 평가한 결과 전단접착력, 목파율, 침지 및 삶음박리율 모두 KS기준 이상으로 나타났다. 리기다소나무 단일수종 집성재의 휨성능을 측정해본 결과 휨강도는 KS의 집성재 강도등급에 따른 휨성능 합격기준을 만족한 반면 휨 탄성계수는 기준에 다소 못 미치는 결과를 나타내었다. 그러나 낙엽송 층재와의 혼합구성을 통해 리기다소나무 집성재의 휨성능(휨강도와 휨탄성계수)을 20% 향상시킬 수 있었으며, 층재 구성방법에 있어서는 판재의 탄성계수가 높고 품질이 우수한 낙엽송 층재를 외층에 배치하는 방법이 보다 효과적인 것으로 확인되었다. 결론적으로 리기다소나무의 부가가치 증진을 위한 구조용 집성재 이용은 그 가능성이 매우 컸다.

Modification of Urea Formaldehyde Resin with Pyrolytic Oil on Particleboard

  • Adegoke, Olaoluwa Adeniyi;Ogunsanwo, Olukayode Yekeen;Olaoye, Kayode Oladayo
    • Journal of Forest and Environmental Science
    • /
    • 제36권3호
    • /
    • pp.219-224
    • /
    • 2020
  • Urea formaldehyde resins are widely used in the manufacturing of wood composite and their usage is always combined with release of formaldehyde characterized to be hazardous to health during and after the manufacturing of the products. This study investigates the effectiveness of wood-based adhesive from oil of pyrolysed Triplochiton scleroxylon sawdust for the production of composite board. The wood-derived Pyrolytic Oil (PyO) was blended with Urea Formaldehyde (UF) resin to formed Pyrolytic Oil-Urea Formaldehyde (PyOUF). The obtained PyOUF called Wood-Based Adhesives at four blends and control (UF) viz; 1:1, 1:2, 1:3, 2:1, 1:3 were further employed to prepare the composite board and test for their bonding strength by physical (water absorption-WA and thickness swelling-Th.S) and mechanical properties (modulus of elasticity-MOE, modulus of rupture-MOR, and impact bending-IB). Data obtained was analysed using analysis of variance at α 0.05. The result of analysis of variance conducted on physical properties show significant difference (p≤0.05) between the WA values obtained when testing the different blending proportion of PyOUF and likewise between 2 and 24 h of immersion. PyOUF had significant effect (p≤0.05) on Th. S for 24 h but no significant different (p>0.05) for the 2 h period of soaking. The analysis of variance on mechanical properties of the composite board (MOE, MOR, and IB) show significance differences (p≤0.05) between the strength values obtained when testing the different ratios of PyO with UF. PyO content influenced the properties of the boards and it is evident that PyO can be used in the manufacture of composite board.

Investigating the Anatomical and Physical-Mechanical Properties of the 8-Year-Old Superior Teakwood Planted in Muna Island, Indonesia

  • SAVERO, Alvin Muhammad;WAHYUDI, Imam;RAHAYU, Istie Sekartining;YUNIANTI, Andi Detti;ISHIGURI, Futoshi
    • Journal of the Korean Wood Science and Technology
    • /
    • 제48권5호
    • /
    • pp.618-630
    • /
    • 2020
  • Muna teakwood, especially from old stands, has been popular as raw material for timber industries in Indonesia for the past ten decades. Due to the scarcity of this wood, superior-grown seedlings of Muna teakwood have been developed and widely planted. Since there is no information on its characteristics, therefore, the aim of this research was to investigate wood characteristics of the 8-year-old superior-grown teak from Muna Island to ensure their proper utilization as raw material for wooden furniture. Wood discs and boards from basal area of three different trees were used as the samples. Macroscopic and microscopic anatomical characteristics were observed following the IAWA's list, while their physical-mechanical properties were measured following British Standard 373-57. Results showed that anatomical characteristics of this wood sample are similar to regular teakwood, but its heartwood portion is higher. Differences among trees are found in regards to wood texture, growth ring width, as well as early and latewood portion. The green moisture content was lower than that of fast-growing teak of a similar age. The wood is more stable than the old teakwood, but its specific gravity is lower. In general, mechanical properties of this wood were higher than those of the regular fast-growing teakwood, but lower than the old one. Based on its specific gravity, this superior Muna teakwood was categorized as a Strength Class of III. The wood is suitable enough for wooden furniture manufacturing.