• Title/Summary/Keyword: Wood products manufacturing

Search Result 97, Processing Time 0.026 seconds

Manufacture of Wood Tar-based Phenol Adhesives and Adhesive Properties (목타르계 페놀접착제의 제조 및 접착성능)

  • Park Sang-Bum;Kim Su-Won;Park Byung-Dae;Han Tae-Hyung;Kang Eun-Chang;Park Jong-Young;Mun Sung-Phil
    • Journal of Korea Foresty Energy
    • /
    • v.24 no.1
    • /
    • pp.33-38
    • /
    • 2005
  • To find a new use of wood tar which is obtained from the manufacturing process of wood charcoal, a resol type of phenol adhesive using wood tar was made and some adhesion tests on plywood were examined. Phenol adhesive synthesized with pine tar was almost same as an original phenol adhesive in physical properties such as solid content and viscosity and tensile-shear adhesive strength of plywood made of phenol adhesive synthesized with pine tar was not much lower than the original one in non-waterproof and waterproof tests. Phenol adhesive synthesized with oak tar, however, was different from original phenol adhesive in physical properties. Adhesive strength of plywood made of oak tar was $50\%$ lower than the original one on waterproof tests. The amount of emitted formaldehyde increased as the amount of wood tar increased.

  • PDF

Analysis on Wood Quality, Geometry Factor, and Their Effects on Lathe Check of Samama (Anthocephalus macrophyllus) Veneer

  • Cahyono, Tekat Dwi;Wahyudi, Imam;Priadi, Trisna;Febrianto, Fauzi;Bahtiar, Effendi Tri;Novriyanti, Eka
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.6
    • /
    • pp.828-841
    • /
    • 2016
  • Relatively little information is available regarding the correlation between wood and veneer quality, especially for Samama wood, an endemic wood species in eastern Indonesia. This study addresses the quality of 8 years old Samama wood and its effect on the veneer quality. Samama wood quality was determined by evaluating its specific gravity, moisture content, fiber dimensions, and microfibril angle from pith toward bark. Meanwhile, veneer quality was assessed by examining veneer thickness and lathe check characteristics. Geometry factor model was constructed to elaborate the quantities of lathe check from pith toward bark. Results show that fair variations of veneer thickness, ranging from 1.5 mm to 3.0 mm, could be obtained from Samama wood. The quantity, depth, and length of lathe check were noticeably decreasing toward bark. Further, in the same manufacturing process, geometry factor was determined as the dominant factor over other wood properties in affecting the frequency of lathe checks from pith towards bark. These facts should be put into consideration in producing veneer from Samama wood. Moreover, these results enlighten the potential of Samama wood as plywood and other excellent veneer-based products.

A Study on Design Method Using CNC in Wooden Products (CNC를 이용한 목제품 디자인 기법에 관한 연구)

  • Lee, Young-Choon
    • Journal of the Korea Furniture Society
    • /
    • v.28 no.4
    • /
    • pp.371-379
    • /
    • 2017
  • This study established the scope of the main contents and interpretation of wooden product design using the CNC manufacturing technology as well as the basic concepts of which were defined, accordingly. After coming up with the definition of the CNC wood manufacturing technology from the academic point of view, a design study, using the practical CNC manufacturing technology, was conducted by analyzing and summarizing the contents of each process. In addition, data research and analysis including review on literatures and case studies of existing products were promoted besides design development through application of the design concepts, ergonomics, principle of molding, etc. Ultimately, this study suggested the step-by-step procedure in design drawing, 3D modeling, CAD/CAM data production, CNC manufacturing, and prototype completion together with figures. Through this, the study proposed a standard manufacturing guideline for wood product design using digital manufacturing technology. Base on such efforts, the advantages and points for improvement in product design using CNC manufacturing technology and the future direction of development were forwarded. Meanwhile, a prototype image that was developed through collaborative efforts between the academic circle and field workers was presented to help the case study on the wooden product design technique using CNC.

Performance of Structural Glulam Laminated with CuAz-3 Preservative Treated Lumber (CuAz-3처리 리기다소나무 제재목을 이용한 구조용 집성재 성능 평가)

  • Kim, Kwang-Mo;Eom, Chang-Deuk;Lee, Sang-Joon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.39 no.6
    • /
    • pp.521-530
    • /
    • 2011
  • Nowadays, market demand of structural Glulam is growing and diversifying. The durability of Glulam should be significantly considered when they are intended to apply for out-door use such as timber bridge and pergola. This study was aimed to develop the manufacturing process of preservative treated structural Glulam using domestic softwood species. 10 m long structural Glulam were manufactured from domestic pitch pine logs with CuAz-3 preservative treatment. At each manufacturing process, the production yield was evaluated. Finally, bending tests were performed to verify the structural performance of manufactured Glulam. From the results, it was shown that the preservative treatment process hardly influenced on the production yield. But domestic pitch pine was proved to not be suitable for making the preservative treated Glulam due to the large difference of preservative permeability between sapwood and heartwood.

Evaluation of the Impact on Manufacturing Temperature and Time in the Production Process of Bio-composites (바이오복합재료 제조 공정시 제조온도 및 시간에 의한 영향 평가)

  • Park, Sang-Yong;Han, Gyu-Seong;Kim, Hee-Soo;Yang, Han-Seung;Kim, Hyun-Joong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.33 no.1 s.129
    • /
    • pp.29-37
    • /
    • 2005
  • The main objective of this research was conducted to evaluate the impacts on the thermoplastic polymer which is a matrix polymer and the rice husk flour (RHF) which is a reinforcing filler relative to the manufacturing temperature and time when bio-composites were manufactured. In order to evaluate the impacts on the rice husk flour relative to the manufacturing temperature, the rice husk flour was persevered for 10 minutes to 2 hours period at $220^{\circ}C$ temperature which was then added with the polypropylene (PP) and low-density polyethylene (LDPE) to complete the manufacturing process of the bio-composites and measure the corresponding mechanical properties. As preserving time increased at $220^{\circ}C$, the tensile and impact strength were decreased due to the thermal degradation of the main components within the rice husk flour. The thermogravimetric analysis (TGA) was used to measure weight loss caused by the actual manufacturing temperature and the result was that the thermoplastic polymer had not scarcely occurred weight change, but there had been increasing rate of weight loss relative to time for the rice husk flour and the bio-composites under the consistent temperature of $220^{\circ}C$ for 2 hour time period. Therefore, the proper manufacturing temperature and time settings are significantly important features in order to prevent the reduction of mechanical properties which were induced throughout the manufacturing process under the high manufacturing temperature.

Thermogravimetric Analysis of Rice Husk Flour for a New Raw Material of Lignocellulosic Fiber-Thermoplastic Polymer Composites

  • Kim, Hyun-Joong;Eom, Young-Guen
    • Journal of the Korean Wood Science and Technology
    • /
    • v.29 no.3
    • /
    • pp.59-67
    • /
    • 2001
  • Rice husk flours were analyzed by chemical composition and thermogravimetric methods in nitrogen atmosphere to discuss its feasibility as a raw material for manufacturing agricultural lignocellulosic fiber-thermoplastic polymer composite. It was revealed in the chemical composition analysis that rice husk flour was composed of moisture, 5.0%; lignin, 21.6%; holocellulose, 60.8%; ash, 12.6%. In the thermogravimetric analysis (TGA), thermal decomposition behavior of rice husk flour from room temperature to $350^{\circ}C$ was similar to that of wood flour, but rice husk flour was more thermally stable from 350 to $800^{\circ}C$ than wood flour because of higher silica content in the rice husk flour and smaller particle size of rice husk flour. The activation energy of thermal decomposition was evaluated using Flynn & Wall expression. As the thermal decomposition proceeded in rice husk flour, the activation energy of thermal decomposition appeared almost constant up to ${\alpha}=0.25$, but thereafter increased. Activation energy of thermal decomposition in wood flour, however, decreased steeply up to ${\alpha}=0.3$, but thereafter remained almost constant. From the results, rice husk flour was thought be a substitute for wood flour in manufacturing agricultural lignocellulosic fiber-thermoplastic polymer composite in the aspect of thermal decomposition.

  • PDF

Mining Information in Automated Relational Databases for Improving Reliability in Forest Products Manufacturing

  • Young, Timothy M.;Guess, Frank M.
    • International Journal of Reliability and Applications
    • /
    • v.3 no.4
    • /
    • pp.155-164
    • /
    • 2002
  • This paper focuses on how modem data mining can be integrated with real-time relational databases and commercial data warehouses to improve reliability in real-time. An important Issue for many manufacturers is the development of relational databases that link key product attributes with real-time process parameters. Helpful data for key product attributes in manufacturing may be derived from destructive reliability testing. Destructive samples are taken at periodic time intervals during manufacturing, which might create a long time-gap between key product attributes and real-time process data. A case study is briefly summarized for the medium density fiberboard (MDF) industry. MDF is a wood composite that is used extensively by the home building and furniture manufacturing industries around the world. The cost of unacceptable MDF was as large as 5% to 10% of total manufacturing costs. Prevention can result In millions of US dollars saved by using better Information systems.

  • PDF

Development of Pitch Pine Glued Laminated Timber for Structural Use -Improvement of Bending Capacity of Pitch Pine Glulam by Using Domestic Larch Laminars- (리기다소나무의 구조용 집성재 이용기술 개발 -낙엽송 층재와의 혼합 구성을 통한 집성재의 휨성능 향상-)

  • Kim, Kwang-Mo;Shim, Kug-Bo;Park, Joo-Saeng;Kim, Wun-Sub;Lim, Jin-Ah;Yeo, Hwanmyeong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.35 no.6
    • /
    • pp.13-22
    • /
    • 2007
  • This study was carried out to scrutinize possibility of manufacturing pitch pine (Pinus rigida) glued laminated timber in order to add values of pitch pine trees. Also, it was investigated to improve bending performance of pitch pine glulam. Pitch pine was imported as one of major plantation species in Korean peninsula. Machine stress rated grades of pitch pine lumber mostly ranged between E7 and E9. which grades were more or less inferior to producing high quality glulam. However, the adhesive properties between pitch pine and pitch pine, and between pitch pine and Japanese larch (Larix kaempferi Carr.), such as shear bond strength, wood failure rate and de-lamination rate of bonded layer submerged in cold and boiling water, were higher than Korean Standard criteria. These properties are essential for manufacturing glulam with single species or multiple species. The modulus of rupture (MOR) of pitch pine glulam exceeded the criterion of Korean Standard for glulam strength grade but modulus of elasticity (MOE) was lower than the criterion. On the other hand, the bending performances (MOR and MOE) were improved 20 percent by mixing with Japanese larch laminar. It is effective to arrange higher quality Japanese larch laminar at the outer layer of glulam for improving bending performances. In conclusion, it is possible to use low quality pitch pine as laminar of structural glulam for adding values of pitch pine.

Modification of Urea Formaldehyde Resin with Pyrolytic Oil on Particleboard

  • Adegoke, Olaoluwa Adeniyi;Ogunsanwo, Olukayode Yekeen;Olaoye, Kayode Oladayo
    • Journal of Forest and Environmental Science
    • /
    • v.36 no.3
    • /
    • pp.219-224
    • /
    • 2020
  • Urea formaldehyde resins are widely used in the manufacturing of wood composite and their usage is always combined with release of formaldehyde characterized to be hazardous to health during and after the manufacturing of the products. This study investigates the effectiveness of wood-based adhesive from oil of pyrolysed Triplochiton scleroxylon sawdust for the production of composite board. The wood-derived Pyrolytic Oil (PyO) was blended with Urea Formaldehyde (UF) resin to formed Pyrolytic Oil-Urea Formaldehyde (PyOUF). The obtained PyOUF called Wood-Based Adhesives at four blends and control (UF) viz; 1:1, 1:2, 1:3, 2:1, 1:3 were further employed to prepare the composite board and test for their bonding strength by physical (water absorption-WA and thickness swelling-Th.S) and mechanical properties (modulus of elasticity-MOE, modulus of rupture-MOR, and impact bending-IB). Data obtained was analysed using analysis of variance at α 0.05. The result of analysis of variance conducted on physical properties show significant difference (p≤0.05) between the WA values obtained when testing the different blending proportion of PyOUF and likewise between 2 and 24 h of immersion. PyOUF had significant effect (p≤0.05) on Th. S for 24 h but no significant different (p>0.05) for the 2 h period of soaking. The analysis of variance on mechanical properties of the composite board (MOE, MOR, and IB) show significance differences (p≤0.05) between the strength values obtained when testing the different ratios of PyO with UF. PyO content influenced the properties of the boards and it is evident that PyO can be used in the manufacture of composite board.

Investigating the Anatomical and Physical-Mechanical Properties of the 8-Year-Old Superior Teakwood Planted in Muna Island, Indonesia

  • SAVERO, Alvin Muhammad;WAHYUDI, Imam;RAHAYU, Istie Sekartining;YUNIANTI, Andi Detti;ISHIGURI, Futoshi
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.5
    • /
    • pp.618-630
    • /
    • 2020
  • Muna teakwood, especially from old stands, has been popular as raw material for timber industries in Indonesia for the past ten decades. Due to the scarcity of this wood, superior-grown seedlings of Muna teakwood have been developed and widely planted. Since there is no information on its characteristics, therefore, the aim of this research was to investigate wood characteristics of the 8-year-old superior-grown teak from Muna Island to ensure their proper utilization as raw material for wooden furniture. Wood discs and boards from basal area of three different trees were used as the samples. Macroscopic and microscopic anatomical characteristics were observed following the IAWA's list, while their physical-mechanical properties were measured following British Standard 373-57. Results showed that anatomical characteristics of this wood sample are similar to regular teakwood, but its heartwood portion is higher. Differences among trees are found in regards to wood texture, growth ring width, as well as early and latewood portion. The green moisture content was lower than that of fast-growing teak of a similar age. The wood is more stable than the old teakwood, but its specific gravity is lower. In general, mechanical properties of this wood were higher than those of the regular fast-growing teakwood, but lower than the old one. Based on its specific gravity, this superior Muna teakwood was categorized as a Strength Class of III. The wood is suitable enough for wooden furniture manufacturing.