• Title/Summary/Keyword: Wood fuel

Search Result 239, Processing Time 0.019 seconds

Economical and Environmental Feasibility of Cultivation under Structure Due to the Introduction of Bio-energy -Comparative Analysis of Wood Pellets and Diesel- (목재펠릿 도입에 따른 시설재배의 경제적.환경적 타당성 분석 -목재펠릿과 경유의 비교분석을 중심으로-)

  • Yang, Jeong-Soo;Yoon, Sung-Yee
    • Korean Journal of Organic Agriculture
    • /
    • v.21 no.3
    • /
    • pp.335-350
    • /
    • 2013
  • With the efforts to development of renewable energy technologies, and increasing awareness to environmental issues, the usage of wood pallets has been increasing every year since the introduction of wood pallet technology to the domestic market. until 2009, majority usage of pellet boiler was in the residential houses. In an effort to increase the distribution of wood pellet boiler to cultivation facilities with high usage of fuels, The Ministry of Agriculture and Forestry has launched a distribution project of wood pellet boiler for fuel usage as a part of the agricultural and fishery energy efficiency projects. Although only small number of farms with a heat-culturing facility have replaced from conventional boiler to pellet boiler. Although part of reason for low usage of pallet boiler is lack of understanding and information of it, the main reasons are high initial cost and uncertainty of its cost efficiency. Also, most people from agricultural industry don't realize it's significance in terms of environmental benefit due to lack of understanding in 'resource circulation' and 'adopting to climate change'. In this study, first, we did a cost-efficiency analysis of the farm which uses a diesel boiler to grow cucumber, tomato, paprika. Then we replaced the diesel boiler to a pallet boiler and measured its cost-efficiency again. By comparing the cost-efficiency of the diesel boiler with the pellet boiler, we analyzed the economic viability of pellet boiler. Then we analyzed viability of pallet boiler usage in terms of 'resource circulation' and 'adopting to climate change'. As a result of our analysis, we have found out that under the current system of government support, the energy usage varies depends of the types crops grown and the higher the energy use, the more cost efficient it is to use the pallet boiler. Also, it is economically viable to use the pallet boiler in terms of 'resource circulation' and 'adopting to climate change'.

Effect of Different Zeolite Supported Bifunctional Catalysts for Hydrodeoxygenation of Waste Wood Bio-oil

  • Oh, Shinyoung;Ahn, Sye-Hee;Choi, Joon Weon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.47 no.3
    • /
    • pp.344-359
    • /
    • 2019
  • Effects of various types of zeolite on the catalytic performance of hydrodeoxygenation (HDO) of bio-oil obtained from waste larch wood pyrolysis were investigated herein. Bifunctional catalysts were prepared via wet impregnation. The catalysts were characterized through XRD, BET, and SEM. Experimental results demonstrated that HDO enhanced the fuel properties of waste wood bio-oil, such as higher heating values (HHV) (20.4-28.3 MJ/kg) than bio-oil (13.7 MJ/kg). Water content (from 19.3 in bio-oil to 3.1-16.6 wt% in heavy oils), the total acid number (from 150 in bio-oil to 28-77 mg KOH/g oil in heavy oils), and viscosity (from 103 in bio-oil to $40-69mm^2/s$ in heavy oils) also improved post HDO. In our experiments, depending on the zeolite support, NiFe/HBeta exhibited a high Si/Al ratio of 38 with a high specific surface area ($545.1m^2/g$), and, based on the yield of heavy oil (18.3-18.9 wt%) and HHV (22.4-25.2 MJ/kg), its performance was not significantly affected by temperature and solvent concentration variations. In contrast, NiFe/zeolite Y, which had a low Si/Al ratio of 5.2, exhibited the highest improved quality for heavy oil at high temperature, with an HHV of 28.3 MJ/kg at $350^{\circ}C$ with 25 wt% of solvent.

Comparison of Efficiency for Wood Fuels (Chips and Pellets) by Life Cycle Assessment (LCA 접근방법에 의한 목질연료(칩, 펠릿)의 효율성 비교)

  • Choi, Young-Seop;Kim, Joon-Soon;Cha, Du-Song
    • Journal of Korean Society of Forest Science
    • /
    • v.98 no.4
    • /
    • pp.426-434
    • /
    • 2009
  • This study was carried out to derive the most optimal production process for the wood fuels(chip and pellet), by collecting cost data on each procedure through the life cycle assessment approach, and to compare between the profitability and efficiency, from the view points of producers and consumers, irrespectively. The costs accounted in this analysis were based on the opportunity cost. The results show that wood chips are cheaper than wood pellets in production costs. In respect to the process with the lowest production cost, while wood chips should be to crush collected residues into pieces on the spot for merchandizing, wood pellets need to be transported to manufactory for pelletizing. The study findings also include that the profits, which is estimated by subtracting expenses from gained sale revenue, were a bit higher for wood chips than wood pellets. Additionally, the price ratio of wood pellets to wood chips for getting the same caloric value appears to be 1.27. Despite of economic benefits of processing wood chips, there are several problems in practice. For producers, there is a possible increase in not only transportation cost for conveying crushers to the dispersed places, but storage cost due to the lack of the marketplaces in the immediate surroundings. For consumers, on the other hand, there are some challenging issues, such as bulky storage facility requirement, additional labor for fuel supplement, frequent ashes disposal, and decomposition in summer and freezing in winter caused by wood chips' own moisture.

Fuel Characteristics of Biomass Pellets Fabricated with Reed Stalk (갈대를 이용하여 제조한 바이오펠릿의 품질 특성)

  • Kim, Seong-ho;Han, Gyu-Seong
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.48 no.3
    • /
    • pp.99-106
    • /
    • 2016
  • Our aim was to identify the potential of reed stalk as a raw materials for biomass pellet production. Compared to woody biomass, reed stalk contained significant levels of ash. The holocellulose content of reed stalk was similar to that of larch, but the lignin content of reed stalk was lower than that of larch. In the elemental analysis, chlorine content of reed stalk was much higher than that of larch, and satisfied only the mixed biomass pellet B of European non-woody pellet standards(EN 14961-6). In quantitative analysis of the ash, heavy metals contents of reed stalk satisfied European non-woody pellet standards. Higher heating value of oven-dried reed stalk pellet was slightly lower than that of larch wood pellet. The durability of reed stalk pellet was lower than that of larch wood pellet. The results of this study indicate that reed stalk might be used as a raw material of mixed biomass pellet B.

An Experimental Study on the Bed Combustion Phenomena in MSW(Municipal Solid Waste) Incinerator (폐기물 소각로 베드에서의 연소현상 관찰을 위한 실험적 연구)

  • Min, Jee Hyun;Shin, Donghoon;Choi, Sangmin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.2
    • /
    • pp.159-165
    • /
    • 1999
  • Experimental studies have been performed to observe the basic phenomena of waste bed combustion in MSW incinerator. A reduced scale apparatus was utilized to simulate the combustion behavior in real plant with 1-dimensional transient behavior at the experimental setup, which uses wet cubic wood with ash content as simulated waste. LHV (lower heating value) of solid fuel, fuel particle size and flow rate of combustion air were taken as important parameters of the bed combustion. For the quantitative analysis, FPR (flame propagation rate), TBT (total burn-out time) and PBT (particle burn-out time) was defined. LHV represent the capability of heat release of the fuel, so that a higher LHV results in faster reaction rate of the fuel bed, which is shown by higher FPR. Fuel particle size is related with surface area per unit mass as well as heat and mass transfer coefficient. As the particle size increases the FPR decreases owing to decreasing specific surface area. Air injection supplies oxygen to the reaction zone. However oversupply of combustion air increases convection cooling of the bed and possibly extinguishes the flame.

Feasibility study of the energy supply system for horticulture facility using dynamic energy simulation (동적 에너지 시뮬레이션을 이용한 시설원예용 에너지 공급시스템의 경제성 분석)

  • Yu, Min-Gyung;Cho, Jeong-Heum;Nam, Yujin
    • KIEAE Journal
    • /
    • v.15 no.1
    • /
    • pp.103-109
    • /
    • 2015
  • Recently, the usage of renewable energy system has been recommended because of the energy saving and depletion of fossil fuel. Especially, ground source heat pump system(GSHP) has a high efficiency by using annual stable ground temperature. Also, wood pellet is low cost and a high calorific value compared to fossil fuel. However, only small number of farms have applied renewable energy system to horticultural facility because of a high initial costs and uncertainty of its cost efficiency. In this study, in order to analyze the feasibility for the horticulture, TRNSYS simulation based on the standard horticultural facility was conducted in different weather and covering material conditions. Then, comparative feasibility analysis of each energy supplying system was conducted. As a result, we have found out that a high initial cost of renewable energy system was recovered by the economics of the energy cost. Due to the energy cost reduction, the payback periods were 10-11 years in the case of GSHP and 4-6 years in the case of wood pellet boiler.

Investigation of Molten Fuel Relocation Dynamics with Applications to LMFBR Post-Accident Fuel Relocation

  • Chun, Moon-Hyun
    • Nuclear Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.88-98
    • /
    • 1980
  • The process of solidification of a single-phase flowing hot fluid in a cylindrical tube has been investigated analytically and experimentally. A series of tests were performed, using paraffin -wax and Wood's metal as flowing hot fluids. These data verified the existing quasistatic numerical analysis model of freezing process developed at Brookhaven National Laboratory In addition, experimental results provided information regarding the effects of various parameters on the .process of transient flowing and freezing through a vertical channel. The experimental apparatus and techniques are described. Comparison of experimental data with predictions of mathematical models for transient molten fluid displacement are presented in graphical form. In addition, the mathematical model is applied to LMFBR post-accident conditions.

  • PDF

A Study on Fire Characteristics of Solid Combustible Materials Based on Real Scale Fire Test (실규모 실험에 의한 고체가연물의 화재특성 연구)

  • Kim, Sung-Chan
    • Fire Science and Engineering
    • /
    • v.25 no.5
    • /
    • pp.62-68
    • /
    • 2011
  • A series of fire tests involving realistic solid combustible materials was conducted to quantify the heat release rate and investigate the fire growth characteristics during the initial fire growth stage. For these tests, single/double wood cribs, urethane cushion having polypropylene covers and wood crib on nylon carpet with urethane carpet padding were used as a fuel source. The fire growth coefficient of the solid combustible materials was quantified and the fire growth characteristics were compared with the $t^2$ fire scenario. The mean effective heat of combustion was evaluated by the total mass loss of fuel and total energy release concept and examined the effect of the ventilation and fire condition. The present study provides the practical information on the fire growth characteristics of solid combustible material to design to a set of fire scenarios for the fire risk analysis.

Briquetting from Japanese larch and Hyunsasi poplar (일본잎갈나무와 현사시나무를 이용한 브리켓의 제조)

  • Han, Gyu-Seong;Kim, Youn-Il;Mun, Kyoung-Tae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.40 no.1
    • /
    • pp.1-9
    • /
    • 2012
  • Densified fuels from biomass are widely used in North America and Europe as a regenerable and clean bioenergy. In this study, the fuel characteristics and densification characteristics of Japanese larch and Hyunsasi poplar were studied using a piston-type briquetting machine. The effects of pressure, pressure holding time, species, and particle size on briquette characteristics were studied. At room temperature, the highly densified briquettes of Japanese larch and Hyunsasi poplar can be produced at a compression pressure of 110~170 MPa. The produced briquettes have densities between 0.66 and 0.94 g/$cm^3$ after 28 days of storage at room temperature. The optimum pressure holding time was found to be 12 seconds. There is a linear increase in pressure with increase in density. The densities of briquettes from Japanese larch were higher than those of briquettes from Hyunsasi poplar. Also, the coarser particle size resulted in higher densities in briquettes than the finer particle size.

A Study on the Characteristics of Dewaterability and Calorific Value of Sewage Sludge by Mixing Waste Wood (폐목재 혼합에 따른 하수슬러지 탈수성 및 발열량 특성 연구)

  • Jin, Yong Gyun;Jo, Eun Ji;Hyun, Wan Su;Han, Hyun Goo;Min, Sun Ung;Yeo, Woon Ho
    • Journal of Urban Science
    • /
    • v.8 no.1
    • /
    • pp.45-49
    • /
    • 2019
  • The land treatment of sewage sludge is necessary because sewage sludge is increasing year by year. Therefore the research of sewage sludge solidification is underway as one of the land treatment methods. However, the problem with existing sewage sludge solidification is that the moisture content of sewage sludge is high and the dewaterability is low. Because of high drying cost the efficiency of energy production is low and the calorific value is insufficient. So the disposer is supplied with a filtration and caloric aid for improving dewaterability and calorific value. In this study, it is aimed to improve the fuel value of sewage sludge by confirming the feasibility of waste wood as a filtration and caloric aid. The dewaterability was measured by CST-test and the calorific value was measured by bomb calorimeter. As a result the dewaterability and calorific value are improved in all of the samples. The dewaterability was improved as the waste wood was added in the sewage sludge. By adjusting the waste wood adding rate into the sewage sludge the dewaterability and calorific value of sewage sludge will be improved. This study confirmed possibility of the waste wood used as filtration and caloric aid.