• Title/Summary/Keyword: Wood fiber

Search Result 477, Processing Time 0.031 seconds

Effect of Wood Particle Size on Physical and Mechanical Composites by Nonwoven Web Process

  • Chae, Shoo Geun;Eom, Young Geun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.33 no.2 s.130
    • /
    • pp.40-55
    • /
    • 2005
  • This study was carried out to discuss the feasibility of wood and plastic wastes as the raw materials for wood particle-plastic composites. For this purpose, composites were manufactured from coarse and fine wood particles and polypropylene fibers by nonwoven web process. And the effect of wood particle size on the performance of the composites were analyzed according to ASTM D 1037-93. In the physical properties of composites, water absorption decreased with the increase of target density and polypropylene fiber content. And the composites with fine wood particles appeared to have slightly lower water absorption than those with coarse wood particles. Thickness swelling did not vary significantly with the increase of target density but increased with the increase of wood particle content. And the composites with fine wood particles were significantly lower in thickness swelling than those with coarse wood particles. In the mechanical properties of composites, dry and wet MOR showed the increasing tendency with the increase of polypropylene fiber content and target density. Dry and wet MOE showed the increasing tendency with the increase of target density but only wet MOE exhibited the increasing tendency with the increase of polypropylene fiber content. Composites with fine wood particles appeared to be generally higher in wet MOR and MOE than those with coarse wood particles. In conclusion, composites with fine wood particles showed generally higher performance than those with coarse ones. Also, composites were significantly superior to control particleboards in the performance, especially in water absorption and thickness swelling.

Effect of Wood-Fiber Characteristics on Medium Density Fiberboard (MDF) Performance

  • Park, Byung-Dae;Kim, Yoon-Soo;Riedl, Bernard
    • Journal of the Korean Wood Science and Technology
    • /
    • v.29 no.3
    • /
    • pp.27-35
    • /
    • 2001
  • Four different sources of wood-fibers from Eucalyptus, Italian poplar, hemlock, and mixed species fibers were used to study the influence of their fiber characteristics on the performance of medium density fiberboard (MDF) panels bonded with both urea-formaldehyde (UF) and phenol-formaldehyde (PF) adhesives. Included fiber characteristics were fiber length, size distribution, bulk density, and acidity. Physical and mechanical properties of MDF panels manufactured by dry process using these different fibers were determined for the comparison of board performance. Two hardwood species had a large fraction of short fibers resulting in a higher bulk density while very long hemlock fibers had lower bulk density. Fiber acidity was revealed to strongly affect the internal bond (IB) strength of MDF panels bonded with UF resins. MDF panels made from mixed species fibers showed highest IB strength of all panels prepared. UF-bonded MDF panels showed poor dimensional stability. In conclusion, the present study showed that wood-fiber characteristics such as fiber length, bulk density, and acidity affect the performance of MDF boards, and also suggested that fiber characteristics be considered for MDF panel manufacture.

  • PDF

Physical Properties of Fabric E-Glass Fiber Reinforced Laminated Timber (II) - Peeling and vapor adsorption properties - (직물유리섬유강화 집성재의 물리적 특성(제2보) - 박리 및 흡습성 -)

  • Jung, In-Suk;Lee, Weon-Hee;Kim, Jong-Man
    • Journal of the Korean Wood Science and Technology
    • /
    • v.31 no.5
    • /
    • pp.35-42
    • /
    • 2003
  • This study was conducted to estimate peeling and vapor adsorption properties made with fabric glass fiber reinforced laminated timber according to our earlier report(Jung et al., 2002). In adsorption peeling test, three all types solid wood were not appeared the peeling. However, solid wood appeared to the peeling in boiling peeling test except for control wood. Vapor adsorption test was performed at 40℃, 90% relative humidity for 48 hours. Cross sections were not different all solid wood. Radial section and tangential section with glass fiber were delayed vapor adsorption compared to control wood. In anisotropy of vapor adsorption, solid wood with glass fiber were small values.

Study on Wood Structure and Fiber Characteristics of Genus Lespedeza species (싸리나무류재(類材)의 조직(組織)과 섬유(纖維)에 관(關)한 연구(硏究))

  • Kim, Su-In;Yang, Chang-Sul
    • Journal of the Korean Wood Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.9-20
    • /
    • 1988
  • Lespedeza species have been widely used not only as plant resources for bark, leaves and honey, but also as erosion control materials. This study was carried out to investigate the structural and wood tiber characteristics in order to obtain basic information for the utilization of the wood. The wood structure was investigated for 10 selected species and the wood fiber, for the 5 selected species among Lespedeza species distributed all over the country. The following results were obtained. In the cross section, campylotropis showed ray diffuse porous wood, L. bicolor, L. cyrtobotrya, L. thunbergii var. intermedia, diffuse porous wood, and L. tomentella, L. angustifolioides. L. maritima, L. robusta, L. patentibicolor, ring porous wood. The maximum diameter of a single vessel ranged 66-123 ${\mu}$ in all species. Campylotropis showed the most number of vessels, L. angustifolioides, the least. The number of ray per mm ranged 7-22, Campylotropis showed the most number of rays, L. angustifolioides, the least. In the radial section the average length of vessel ranged 121-250 ${\mu}$ in all species. L. thunbergii var. intermedia showed the longest vessel, L. tomentella, the shortest. In tangential section the average width of the uniseriate ray ranged 9.2-14.7${\mu}$, that of the multiseriate ray, 19.2-42.1 ${\mu}$. The average height of the uniseriate ray ranged 143.0-1162.0 ${\mu}$. The width of fiber ranged 10.12-13.61 ${\mu}$, L. maximowiezii showed the narrowest tiber, L. thunbergii var. intermedia. the widest, the thickness of fiber wall ranged 2.93-3.71 ${\mu}$ in the five species. L. maximowiezii showed the most thin fiber wall, L. thunbergii var. intermedia, the thickest, L. cyrtobotrya showed the difference in the size of fiber between the shade and the sunny sites but L. maximowiezii showed no difference. There was significant difference in fiber length, fiber width and wall thickness between L. eyrtobotrya and L. maximowiezii.

  • PDF

Anatomical Structures and Fiber Quality of Four Lesser-Used Wood Species Grown in Indonesia

  • MARBUN, Sari Delviana;WAHYUDI, Imam;SURYANA, Jajang;NAWAWI, Deded Sarip
    • Journal of the Korean Wood Science and Technology
    • /
    • v.47 no.5
    • /
    • pp.617-632
    • /
    • 2019
  • This study aimed to investigate the anatomical structure and fiber quality of four lesser-used wood species namely Benuang (O. sumatrana), Duabanga (D. moluccana), Pisang Merah (H. hellwigii), and Terap (A. odoratissimus). This study evaluated its suitability for raw material in pulp and paper manufacturing. The anatomical structure was observed macro- and microscopically. Macroscopic structures were observed directly to the wood samples, while microscopic characteristics were observed through microtome specimens. Fiber dimension was measured through macerated specimens and fiber quality was analyzed following the Rachman and Siagian's method. Results showed that these four timber species have similarity in the indistinct growth ring, diffuse porous in a radial pattern, rounded solitary vessel outline, 1 to 3 cells of ray width, deposits within the rays, fiber length, and cell wall thickness. Differences were found on vessel diameter, vessel grouping, vessel frequency, tyloses existence, type of axial parenchyma, and ray height. Based on fiber length and its derived values, the wood fibers of all species studied are suitable for pulp and paper manufacturing. They belong to the II quality class. The produced pulp and paper would have good quality, especially in tensile, folding, and tear strength. To promote their utilization, silviculture aspect of these four species has to be well understood.

Study on the Change in Physical and Functional Properties of Paper by the Addition of Chitosan (키토산 섬유를 첨가한 종이의 물성 및 기능성의 변화에 관한 연구)

  • Park, Seong-Cheol;Kang, Jin-Ha;Lim, Hyun-A
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.42 no.5
    • /
    • pp.37-46
    • /
    • 2010
  • This study was carried out to develop new application field and obtain the basic data of mixed paper with wood pulp and chitosan fiber for producing functional paper. Two types of wood pulp, such as SwBKP and HwBKP, were mixed with chitosan fiber. Physical and optical properties, water vapor absorption, air permeability, antibacterial activity and ash were measured. And the surface morphology of manufactured paper was observed using SEM. The results are as follows. It was revealed that density, breaking length, burst index, tear index, folding endurance and brightness were reduced but water vapor absorption and air permeability were on the rise in the structural view of SwBKP according to increasing the chitosan fiber ratio. Those HwBKP added chitosan fiber were great not only in the strength but also water vapor absorption and air permeability except for brightness. The water vapor absorption was lower and the air permeability was higher in the HwBKP added various chitosan fiber ratios than those with no chitosan fiber. It is estimated that these properties were related with various mixed rate of chitosan fiber. Particularly, air permeability was strongly dependent on the mixed rate of chitosan fiber. The chitosan fiber has superior antibacterial property, comparing with wood fiber. Adding chitosan fiber to the wood pulp was found to have an excellent antibacterial activity, more than 90%. The ashes were determined within 0.5%. Special bonds between chitosan fiber and wood pulp was observed by SEM and it means that the chitosan fiber were combined equally in the interior of wood pulp. In conclusion, mixing wood pulp with chitosan fiber can not only improves the quality of paper but also extend the usage of paper as a functional paper by using inherent property of chitosan. After all, production of functional paper added chitosan fiber is expected for new valuable industry of paper.

Study on Manufacture of Korean Paper(Hanji) Sludge-Wood Fiber Composite Boards I. Physical Properties of Korean Paper(Hanji) Sludge-Wood Fiber Composite Boards (한지슬러지-목재섬유 복합보드의 제조연구 I. 한지슬러지-목재섬유 복합보드의 물리적 성질)

  • Lee, Phil-Woo;Lee, Hak-Lae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.23-30
    • /
    • 1999
  • This study was carried out to develop the Korean paper(Hanji) sludge-wood fiber composite boards utilizing the relinquished sludges occurring from the making process of Korean classic paper Hanji. The bark of paper mulberry(Broussonetia kazinoki Sieb.) has been used as a raw material since past hundreds and thousands years. Korean paper(Hanji) sludge was divided into two kinds, the one was the white sludge from the first stage and the other was the black sludge occurring from the final stage of Korean paper(Hanji) making. Four levels of the mixed ratio of each white or black sludge to wood fiber(10:90, 20:80, 30:70 and 40:60), three levels of the resin adhesives(PMDI, urea and phenol resin) and three levels of the density(0.60, 0.75 and 0.90) were designed to investigate the physical properties of Korean paper(Hanji) sludge-wood fiber composite boards. From the results and discussion, it could be concluded as follows : 1. In the white sludge-wood fiber composite board, the thickness swelling was not affected by the specific gravity and sludge additive of composite boards, but among the resin adhesives PMDI resin showed the best dimensional stability. Water absorption was superior in urea resin, secondly PMDI resin and very poor in phenol resin. 2. In the black sludge-wood fiber composite board, thickness swelling was superior in PMDI resin but very poor in phenol resin. In water absorption, PMDI and urea resin showed good results, regardless of specific gravity or sludge additive, but phenol resin showed poor results. 3. From the results and discussion of physical properties it is suggested that the white sludge-wood fiber composite boards bonded with PMDI or black sludge-wood fiber composite boards bonded with urea resin were made possibly with similar or better properties. compared with general fiberboard until the addition of 20% sludge into wood fiber.

  • PDF

Effects of Nanoclay and Glass Fiber on the Microstructural, Mechanical, Thermal, and Water Absorption Properties of Recycled WPCs

  • Seo, Young-Rok;Kim, Birm-June;Lee, Sun-Young
    • Journal of the Korean Wood Science and Technology
    • /
    • v.47 no.4
    • /
    • pp.472-485
    • /
    • 2019
  • When wood plastic composites (WPCs) have been used for a certain period of time, they become waste materials and should be recycled to reduce their environmental impact. Waste WPCs can be transformed into reinforced composites, in which fillers are used to improve their performance. In this study, recycled WPCs were prepared using different proportions of waste WPCs, nanoclay, and glass fiber. The effects of nanoclay and glass fiber on the microstructural, mechanical, thermal, and water absorption properties of the recycled WPCs were investigated. X-ray diffraction showed that the nanoclay intercalates in the WPCs. Additionally, scanning electron micrographs revealed that the glass fiber is adequately dispersed. According to the analysis of mechanical properties, the simultaneous incorporation of nanoclay and glass fiber improved both tensile and flexural strengths. However, as the amount of fillers increases, their dispersion becomes limited and the tensile and flexural modulus were not further improved. The synergistic effect of nanoclay and glass fiber in recycled WPCs enhanced the thermal stability and crystallinity ($X_c$). Also, the presence of nanoclay improved the water absorption properties. The results suggested that recycled WPCs reinforced with nanoclay and glass fiber improved the deteriorated performance, showing the potential of recycled waste WPCs.

Effective Utilization of Hemp Fiber for Pulp and Papermaking(II) - Characteristics of hemp-wood paper made of hemp fiber cooked at low temperature - (펄프.제지용 원료로서의 삼 섬유 이용에 관한 연구(제2보) -저온 펄프화 삼 섬유의 수초지 특성-)

  • Lee, Myoung-Ku;Kim, Ji-Seop;Yoon, Seung-Lak
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.43 no.5
    • /
    • pp.27-33
    • /
    • 2011
  • Hemp bast pulp cooked at temperature below $100^{\circ}C$ followed by defibration by the knife and the valley beater, respectively was mixed with softwood pulp varying the amount of hemp pulp in order to find the optimum condition for making hemp-wood paper. Both the knife and the valley beaters contributed to the dispersion of pulp fiber well. Lots of shives were found when the knife beater was applied exclusively, but the fibers were dispersed well when freeness dropped to 600 mL CSF and 500 mL CSF by the valley beater. Air resistance decreased drastically below 500 mL CSF where rapid disrupture of pulp fiber occurred. As the values for freeness and hemp fiber content increased, so did roughness and bulk. It was apparent that the tear strength of hemp-wood paper was on the rise drastically as hemp fiber content increased. Nevertheless the optimum hemp fiber content of hemp-wood paper would be 20% considering the decrease in both tensile and burst strengths as well as sheet formation.

Studies on Manufacturing Wood Particle-Polypropylene Fiber Composite Board

  • Lee, Chan-Ho;Eom, Young-Geun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.29 no.3
    • /
    • pp.47-58
    • /
    • 2001
  • For finding both ways of recycling the wood and plastic wastes and solving the problem of free formaldehyde gas emission through manufacturing wood particle-polypropylene fiber composite board without addition of formaldehyde-based thermosetting resin adhesive, control particleboards and nonwoven web composite boards from wood particle and polypropylene fiber formulation of 50 : 50, 60 : 40, and 70 : 30 were manufactured at density levels of 0.5, 0.6, 0.7, and 0.8 g/$cm^3$, and were tested both in the physical and mechanical properties according to ASTM D 1037-93. In the physical properties, control particleboard had significantly higher moisture content than composite board. In composite board, moisture content decreased with the increase of target density only in the board with higher content of polypropylene fiber and also appeared to increase with the increase of wood particle content at a given target density. Control particleboard showed significantly greater water absorption than composite board and its water absorption decreased with the increase of target density. In composite board, water absorption decreased with the increase of target density at a given formulation but increased with the increase of wood particle content at a given target density. After 2 and 24 hours immersion, control particleboard was significantly higher in thickness swelling than composite board and its thickness swelling increased with the increase of target density. In composite board, thickness swelling did not vary significantly with the target density at a given formulation but its thickness swelling increased as wood particle content increased at a given target density. Static bending MOR and MOE under dry and wet conditions increased with the increase of target density at a given formulation of wood particle and polypropylene fiber. Especially, the MOR and MOE under wet condition were considerably larger in composite board than in control particleboard. In general, composite board showed superior bending strength properties to control particleboard, And the composite board made from wood particle and polypropylene fiber formulation of 50 : 50 at target density of 0.8 g/$cm^3$ exhibited the greatest bending strength properties. Though problems in uniform mixing and strong binding of wood particle with polypropylene fiber are unavoidable due to their extremely different shape and polarity, wood particle-polypropylene fiber composite boards with higher performance, as a potential substitute for the commercial particleboards, could be made just by controlling processing variables.

  • PDF