• 제목/요약/키워드: Wood decomposition

Search Result 66, Processing Time 0.023 seconds

Thermogravimetric Analysis of Rice Husk Flour for a New Raw Material of Lignocellulosic Fiber-Thermoplastic Polymer Composites

  • Kim, Hyun-Joong;Eom, Young-Guen
    • Journal of the Korean Wood Science and Technology
    • /
    • v.29 no.3
    • /
    • pp.59-67
    • /
    • 2001
  • Rice husk flours were analyzed by chemical composition and thermogravimetric methods in nitrogen atmosphere to discuss its feasibility as a raw material for manufacturing agricultural lignocellulosic fiber-thermoplastic polymer composite. It was revealed in the chemical composition analysis that rice husk flour was composed of moisture, 5.0%; lignin, 21.6%; holocellulose, 60.8%; ash, 12.6%. In the thermogravimetric analysis (TGA), thermal decomposition behavior of rice husk flour from room temperature to $350^{\circ}C$ was similar to that of wood flour, but rice husk flour was more thermally stable from 350 to $800^{\circ}C$ than wood flour because of higher silica content in the rice husk flour and smaller particle size of rice husk flour. The activation energy of thermal decomposition was evaluated using Flynn & Wall expression. As the thermal decomposition proceeded in rice husk flour, the activation energy of thermal decomposition appeared almost constant up to ${\alpha}=0.25$, but thereafter increased. Activation energy of thermal decomposition in wood flour, however, decreased steeply up to ${\alpha}=0.3$, but thereafter remained almost constant. From the results, rice husk flour was thought be a substitute for wood flour in manufacturing agricultural lignocellulosic fiber-thermoplastic polymer composite in the aspect of thermal decomposition.

  • PDF

Studies on the Composition analysis of Oak Mushroom (Lentinula edodes) Cultural Waste (표고버섯 재배용 참나무 폐골목의 화학적 성분분석)

  • Lee, Min-Woo;Seo, Yung-Bum
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2008.04a
    • /
    • pp.222-228
    • /
    • 2008
  • The chemical composition and thermal, crystal characterization of oak mushroom waste were investigated in comparison with those normal oak wood for utilization of cellulose from oak mushroom waste. The oak mushroom waste contained a higher percentage of ash, and hot water extractives than oak wood. This results indicated that the materials inside the body are easily decomposed during the oak mushroom cultivation. The lower percentage of holocellulose and a-cellulose of oak mushroom waste caused by fungal decomposition too. Whereas, the thermal decomposition behavior and crystallinity of oak mushroom waste was similar to that of normal oak wood, which indicated that the cellulose characterization of oak mushroom waste is resistant to fungal decomposition. In additionally, a degree of polymerization of oak mushroom waste must be investigate for examination of cellulose crystalline characterization, especially.

  • PDF

Wood and Leaf Litter Decomposition and Nutrient Release from Tectona grandis Linn. f. in a Tropical Dry Deciduous Forest of Rajasthan, Western India

  • Kumar, J.I. Nirmal;Sajish, P.R.;Kumar, Rita.N.;Bhoi, Rohit Kumar
    • Journal of Forest and Environmental Science
    • /
    • v.26 no.1
    • /
    • pp.17-23
    • /
    • 2010
  • The present study was conducted to quantify wood and leaf litter decomposition and nutrient release of a dominant tree species, Tectona grandis Linn. F. in a tropical dry deciduous forest of Rajasthan, Western India. The mean relative decomposition rate was maximum in the wet summer and minimum during dry summer. Rainfall and its associated variables exhibited greater control over litter decomposition than temperature. The concentrations of N and P increased in decomposing litter with increasing retrieval days. Mass loss was negatively correlated with N and P concentrations. The monthly weight loss was significantly correlated (P < 0.05) with soil moisture and rainfall in both wood and leaf litter. Tectona grandis was found to be most suitable tree species for plantation programmes in dry tropical regions as it has high litter deposition and decomposition rates and thus it has advantages in degraded soil restoration and sustainable land management.

Pyrolysis Properties of Lignins Extracted from Different Biorefinery Processes

  • Lee, Hyung Won;Jeong, Hanseob;Ju, Young-Min;Youe, Won-Jae;Lee, Jaejung;Lee, Soo Min
    • Journal of the Korean Wood Science and Technology
    • /
    • v.47 no.4
    • /
    • pp.486-497
    • /
    • 2019
  • The non-isothermal and isothermal pyrolysis properties of H lignin and P lignin extracted from different biorefinery processes (such as supercritical water hydrolysis and fast pyrolysis) were studied using thermogravimetry analysis (TGA) and pyrolyzer-gas chromatography/mass spectrometry (Py-GC/MS). The lignins were characterized by ultimate/proximate analysis, FT-IR and GPC. Based on the thermogravimetry (TG) and derivative thermogravimetry (DTG) curves, the thermal decomposition stages were obtained and the pyrolysis products were analyzed at each thermal decomposition stage of non-isothermal pyrolysis. The isothermal pyrolysis of lignins was also carried out at 400, 500, and $600^{\circ}C$ to investigate the pyrolysis product distribution at each temperature. In non-isothermal pyrolysis, P lignin recovered from a fast pyrolysis process started to decompose and produced pyrolysis products at a lower temperature than H lignin recovered from a supercritical water hydrolysis process. In isothermal pyrolysis, guaiacyl and syringyl type were the major pyrolysis products at every temperature, while the amounts of p-hydroxyphenyl type and aromatic hydrocarbons increased with the pyrolysis temperature.

Thermal and Rheological Studies of Ricinodendron Heudelotii Wood for Its Pulp Production Potential

  • Ogunleye, Bolade Mercy;Fabiyi, James Sunday;Fuwape, Joseph A.
    • Journal of Forest and Environmental Science
    • /
    • v.32 no.4
    • /
    • pp.323-328
    • /
    • 2016
  • Thermal stability and rheological behaviors of Ricinodendron heudelotii wood were investigated. Thermogravimetric analysis conducted at a heating rate of $10^{\circ}C/min$ from 20 to $600^{\circ}C$ in a nitrogen atmosphere indicated that there was no variation in the decomposition of the onset and final temperature for all the polymers. The thermal behaviours were investigated at a temperature range from 130 to $0^{\circ}C$ at $3^{\circ}C/min$, multi-frequencies of 0.1-10 Hz using dynamic mechanical analysis. N-methyl-2-pyrolidone saturated specimens were tested while submerged under the same solvent. Polymers decomposition pattern during thermogravimetric analysis are similar in the radial position of the wood. The glass transition temperature (Tg) of R. heudelotii is $45{\pm}1^{\circ}C$ at 0.1 Hz. The Tg differs from the innerwood to outerwood. The Tg showed that N-methyl-2-pyrolidone saturated R. heudelotii would require low energy consumption during chemi-thermomechanical pulping.

Utilization of Wood Chips for Disposing of Swine Manure (목질칩의 축분뇨 정화재로의 이용)

  • Choi, In-Gyu
    • Korean Journal of Environmental Agriculture
    • /
    • v.20 no.4
    • /
    • pp.203-210
    • /
    • 2001
  • In order to environmentally use wood chips manufactured from low valued forest resources by forest tendering, wood chips were used for the evaluation on chips characteristics, decomposition capability of organic wastes, and field experiment and determination of conditions for decomposer. Bioclusters manufactured by Cryptomeria japonica, commercially available wood chips in Japan, showed higher pore ratio, water reservation and water resistance, and higher cellulose content with lower hot water solubles than domestic wood chips. The useful size of wood chips for swine manure decomposition was 10 (length) ${\times}$ 5 (width) ${\times}$ 2 (thickness) mm, and cellulose contents and alkali solubles of Pinus densiflora and Populus tomentiglandulosa were similar to those of bioclusters. According to the decomposition ratio depending on wood species, it was ordered as Pinus densiflora > Pinus koraiensis > Cryptomeria japonica. The swine manure decomposition ratio depending on treatment hours by Pinus koraiensis was constant with the ratio of 15 to 16 g per hour by 1 kg of chip, indicating of daily swine decomposition amount of 390 kg by 1 ton of chips which was equal to the amount of daily swine manure production by 70 swines. Analyzing by long term used wood chips during 40 days treatment, the treated wood chips characteristically showed stable total nitrogen content, suitable pH, high accumulation of inorganic contents such as calcium, phosphorus, potassium and sodium, and no odor. During winter, the inner temperature of decomposer was kept at $43^{\circ}C$, but air bubble was occurred due to high pH and viscosity of swine manure. The most appropriate mixing ratio between wood chips and swine manure was 1 versus 2 or 3, and at more than ratio 1 versus 3, ammonia gas was caused because of anaerobic fermentation status by high moisture content of wood chips. The mixing interval of decomposer was 3 mins. per hour for the best swine decomposition.

  • PDF

Kinetics of Thermal Degradation of Polypropylene/Nanoclay/Wood Flour Nanocomposites

  • Mohan, D. Jagan;Lee, Sun-Young;Kang, In-Aeh;Doh, Geum-Hyun;Park, Byung-Dae;Wu, Qinglin
    • Journal of the Korean Applied Science and Technology
    • /
    • v.24 no.3
    • /
    • pp.278-286
    • /
    • 2007
  • As a part of enhancing the performance of wood-plastic composites (WPC), polypropylene (PP)/ nanoclay (NC)/ wood flour (WF) nanocomposites were prepared using melt blending and injection molding process to evaluate their thermal stability. Thermogravimetric analysis (TGA) was employed to investigate thermal degradation kinetics of the nanocomposites both dynamic and isothermal conditions. Dynamic scans of the TGA showed an increased thermal stability of the nanocomposites at moderate wood flour concentrations (up to 20 phr, percentage based on hundred percent resin) while it decreased with the addition of 30 phr wood flour. The activation energy $(E_a)$ of thermal degradation of nanocomposites increased when nanoclay was added and the concentration of wood flour increased. Different equations were used to evaluate isothermal degradation kinetics using the rate of thermal degradation of the composites, expressed as weight loss (%) from their isothermal TGA curves. Degradation occurred at faster rate in the initial stages of about 60 min., and then proceeded in a gradual manner. However, nanocomposites with wood flour of 30 phr heated at $300^{\circ}C$ showed a drastic difference in their degradation behavior, and reached almost a complete decomposition after 40 min. of the isothermal heating. The degree of decomposition was greater at higher temperatures, and the residual weight of isothermal degradation of nanocomposites greatly varied from about 10 to 90%, depending on isothermal temperatures. The isothermal degradation of nanocomposites also increased their thermal stability with the addition of 1 phr nanoclay and of wood flour up to 20 phr. But, the degradation of PP100/NC1/MAPP3/WF30 nanocomposites with 30 phr wood flour occurs at a faster rate compared to those of the others, indicating a decrease in their thermal stability.

Comparison Study of Thermal Decomposition Characteristics of Wattle & Pine Tannin-based Adhesives

  • Kim, Sumin;Lee, Young-kyu;Kim, Hyun-Joong;Eom, Young Geun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.30 no.3
    • /
    • pp.34-41
    • /
    • 2002
  • This study investigated the thermogravimetric analysis of two types of cured tannin-based adhesives from wattle and pine, with three hardeners of paraformaldehyde, hexamethylenetetramine and TN (tris(hydroxyl)nitromethan), at a temperature of 170℃ and a heating rate of 5, 10, 20 and 40℃/min for 10 minutes. The 5 minutes cured wattle tannin-based adhesive with each hardener at 170℃ was also tested to compare the degree of curing. It was found that thermogravimetric analysis could be used to measure the degree of curing of a thermosetting adhesive. The TG-DTG curves of all the adhesive systems were similar and showed three steps in a similar way to a phenolic resin. This means that each adhesive system is well cross-linked. However, a high thermal decomposition rate was shown at 150 to 400℃ in the case of the pine tannin sample with TN (tris(hydroxyl)nitromethan). The Flynn & Wall expression was used to evaluate the activation energy for thermal decomposition. As the level of conversion (𝛼) increased, the activation energy of each system increased. The activation energy of the wattle tannin-based adhesive with paraformaldehyde was higher than the others.

Observation of Soft-Rot Wood Degradation Caused by Higher Ascomyceteous fungi

  • Lee, Yang-Soo
    • Mycobiology
    • /
    • v.28 no.1
    • /
    • pp.47-50
    • /
    • 2000
  • The capability of higher ascomyceteous fungi to cause typical soft-rot decay for wood under laboratory conditions is reviewed and discussed. Fungi tested were extremely active in the decomposition of timbers. Scanning electron micrographs illustrated typical soft-rot decay pattern of higher wood decay ascomycetes, with the exception of H. trugodes that caused white-rot decay. Most of the fungi tested could be grouped as soft-rot fungi that showed typical soft-rot type II. Hypha confined primarily to the resin canals in softwoods or vessel elements in hardwoods and spread tracheid to tracheid via pits of cell wall to cell wall with mechanical force.

  • PDF

Characteristics of Microbial Decomposition of Bast Fibers by Wood Rot Fungi (목질분해균에 의한 인피섬유의 미생물분해 특성)

  • 윤승락;최인규;이재원;김재경
    • Journal of Korea Foresty Energy
    • /
    • v.20 no.1
    • /
    • pp.6-11
    • /
    • 2001
  • In order to use bast fibers of mulberry tree at a pulp source of Hanji, the bast fibers were microbiologically treated with several wood rot fungi, and the microscopic characteristics of bast fibers depending on treatment days were evaluated. By wood rot fungi, Phanerochaete chrysosporium and Trametes versicolor, the weight reduction ratio was approximately 50 percent within incubation for 20 days. occurring together with decomposition of useful fibers. However, Hwterobasidion insularis and Stereum hirsutum have completely decomposed the utmost layer of black blue colored bast fibers, and not caused the damage if fibers. Until incubation for 10 days, the cellulose content of vast fibers by Stereum hirsutum was 78.9 percent with lignin content of 7.2 percent, showing an appropriate decomposition for useful fibers. By microscopic observation, the bundled fibers were separated to single fiber within treatement days 30 by Pleurotus ostreatus, and there were no damage on the surface of fiber by treatment days 50.

  • PDF