• Title/Summary/Keyword: Wood Structure

Search Result 581, Processing Time 0.026 seconds

Comparison of the Mercury Intrusion Porosimerty, Capillary Flow Porometry and Gas Permeability of Eleven Species of Korean Wood

  • Jang, Eun-Suk;Kang, Chun-Won;Jang, Sang-Sik
    • Journal of the Korean Wood Science and Technology
    • /
    • v.46 no.6
    • /
    • pp.681-691
    • /
    • 2018
  • The typical methods of mercury intrusion porosimetry (MIP) and capillary flow porometry (CFP) were used to evaluate the pore size of cross-section of wood and the effect of the pore structure on the permeability of wood was analyzed in this study. The results of this study were as followings: The pore size of wood measured by CFP was larger than that measured by MIP except for Lime tree, Korean red pine and Paulownia. Among the three pore types of porous materials defined by IUPAC (through pores, blind pores, and closed pores), only through pores are related to permit fluid flow. MIP measures the pore size of both through pores and blind pores, while CFP measures the pore size of only constricted through pores. Therefore, pore size measured by MIP was not related to gas permeability, however pore size measured by CFP had a proportional relationship with gas permeability.

Environmental Monitoring of Heavy Metals and Arsenic in Soils Adjacent to CCA-Treated Wood Structures in Gangwon Province, South Korea

  • Abdelhafez, Ahmed A.;Awad, Yasser M.;Kim, Min-Su;Ham, Kwang-Joon;Lim, Kyoung-Jae;Joo, Jin-Ho;Yang, Jae-E.;Ok, Yong-Sik
    • Korean Journal of Environmental Agriculture
    • /
    • v.28 no.4
    • /
    • pp.340-346
    • /
    • 2009
  • Chromated copper arsenate (CCA) is a chemical wood preservative that has been intensively used to protect wood from decay during the last few decades. CCA is widely used to build structures such as decks, fences, playgrounds and boardwalks. However, structures constructed of CCA-treated wood have caused adverse environmental effects due to leaching of Cr, Cu and As into surrounding soils. This research was conducted to monitor the vertical and horizontal distribution of Cr, Cu and As in soils adjacent to CCA-treated wood structures in Korea. Two structures constructed with CCA-treated wood were selected at Hongcheon and Chuncheon in Gangwon Province, South Korea. Eleven soil profile samples were collected at depths of 0 to 80 cm at each site, while 12 surface soil samples were collected at distances of 0 to 200 cm from each structure. The soil chemical properties, soil particle size distribution and total metal concentrations were then determined. The results revealed that soils near CCA-treated wood structures were generally contaminated with Cr, Cu and As when compared to the background concentration of each metal. In addition, the concentrations of Cr, Cu and As in soils decreased as the vertical and horizontal distance from the structure increased. Further studies should be conducted to evaluate the mobility and distribution of these metals in the environment as well as to develop novel technologies for remediation of CCA contaminated soils.

Analysis of Structure and Physical and Chemical Properties of the Carbonized Pine Wood (Pinus densiflora Sieb. et Zucc.) Materials - Pyrolytic Behavior of Pine Wood Dust - (가열처리 및 탄화처리 소나무재(Pinus densiflora Sieb. et Zucc.)의 구조 및 물리·화학적 특성(III) - 소나무재 톱밥의 열분해 반응 -)

  • Lee, In-Ja;Lee, Won-Hee
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.3
    • /
    • pp.266-274
    • /
    • 2014
  • To extend the understanding of the pyrolysis mechanism of wood, we have investigated wood dust charcoal and condensate of volatile organic compounds (VOC) obtained during the pyrolysis of red pine (Pinus densiflora Sieb. et Zucc.) at $180{\sim}450^{\circ}C$ using elemental analysis, IR and GC/Mass. The effect of activation process on the charcoal structure also has been studied by comparing elemental analysis and IR data of charcoal carbonated at $600^{\circ}C$ and charcoals activated at $750^{\circ}C$. The results show that pyrolysis of wood has mainly started near at $240^{\circ}C$ and its chemical components did not changed much up to $270^{\circ}C$. However, the element contents and IR spectra drastically changed at $300^{\circ}C$. The fact that IR peaks related to the aromatic ring of lignin are observed in the charcoal pyrolized at $450^{\circ}C$ indicates that a small part of lignin still remains at this temperature. The chemical structure of the activated charcoal seems almost unaffected by the activation time.

A Study on the Component Analysis of Sappan Wood Extracts (소목 추출물의 구조분석)

  • 이상락;김인회;남성우
    • Textile Coloration and Finishing
    • /
    • v.14 no.4
    • /
    • pp.229-239
    • /
    • 2002
  • Colorants were extracted from the heartwood of sappan lin. with MeOH under reflux, and the concentrate or the powder of dye was prepared by low pressure concentration method using suitable organic solvent. Various components were isolated from sappan wood, and the chemical structure and mechanism of compound having the excellent antibacterial and deodorization properties were analyzed. The results obtained are as follows ; The seventeen components of sappan wood were seperated by HPLC chromatography, and the five components among them were existed more than 6% and the other components were existed lower than 0.6%. The resolving powers of the non-polar solvent and polar solvent systems were evaluated by their ability to resolve the samples. It showed that chloroform-methanol-water(800:150:10) system has the best resolving power. Although the seperation rate is very slow, polyamide C-100 column chromatography gives a clear seperation of sappan wood. On the basis of the spectrometric data such as IR, UV, $GC-Mass,\;^1H-NMR,\;^{13}C-NMR\;and\;^1H-^{ 13}C-NMR$, the chemical structure of compound haying the excellent antibacterial and deodorization properties was established as brazilin containing the functional groups such as two quaternary carbon, one benzyl carbon, methylene contiguous to oxygen and methylene caused by oxygen atom.

Analysis of Species and Manufacturing Techniques for Wood Coffins of Bae's Family, Excavated in Youngdong, Korea (영동지역 배씨 문중 목관의 수종 및 가공법 분석)

  • Kim, Mun-Sung;Park, Won-Kyu
    • Journal of the Korea Furniture Society
    • /
    • v.20 no.1
    • /
    • pp.95-104
    • /
    • 2009
  • The study was carried out to analyze wood quality of coffin board, the wood species of coffin excavated in Youngdong, Korea. All coffin woods were identified as hard pines, Korean red pine(Pinus densiflora S. & Z.). According to wood quality of coffins, inner coffins of Bae Cheon-Jo and his wife showed similarity and dissimilarity comparing with several literatures. The similarity was in the structure of panels, bottom lining board and charcoal layer, and the dissimilarity was in jointing. From the analysis of fibrous materials attached to coffin woods, the paper mulberry and cotton fibers were identified. In the inner coffin of Bae Cheon-Jo, tool traces by handle planer were observed.

  • PDF

Evaluation of the Residual Performance of Partially Charred Components of Old Wooden Structure I - Use of Ultrasonic Velocity and Testing of the Drilling Resistance -

  • Lee, Hyun-Mi;Hwang, Won-Joung;Lee, Dong-Heub;Kim, Hong Sik
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.2
    • /
    • pp.193-206
    • /
    • 2014
  • Residual performance of old architectural wood which has been damaged was measured using Nondestructive Evaluation (NDE). The wood Pole Tester was used to assess ultrasonic velocity inside wood and drill resistance was determined using an IML-resistograph. For ultrasonic measurements squared timber and circular timber's measurements were separately conducted with 1,300 m/s as the standard ultrasonic velocity. The standard wood samples divided into two parts; a non-sound area (below the standard), and a sound area (above the standard). Furthermore, schematization of wood was compared with results naked eye observation. The drilling resistance test was performed for both length and thickness direction in wood. The internal of the drilling was set at 30 cm (length direction), 5 cm (width direction) and 30cm (thickness direction). A non-sound area was defined as that 1) amplitude is below 20% and 2) carbonization and deterioration are related.

Investigation of Carbonization Mechanism of Wood(I) (목재의 탄화기구 해석(I))

  • Kwon, Sung-Min;Kim, Nam-Hun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.34 no.3
    • /
    • pp.8-14
    • /
    • 2006
  • The object of this study was to investigate the carbonization of Quercus variabilis wood samples in pyrolysis system at temperature ranging from 250 to $740^{\circ}C$ to contribute to the knowledge of wood carbonization mechanism. Volume of wood sample decreased with increasing the carbonization temperature, and checks were developed along with radial direction. Weight loss increased with increasing carbonization temperature. During carbonization, tangential direction showed higher shrinkage of vessel diameter than radial direction. SEM observation indicated that the cell walls in wood fibers and parenchyma cells presented the layering structure at $250^{\circ}C$ and $300^{\circ}C$. However, the cross section of cell walls at $340^{\circ}C$ and over showed an amorphous- like structure without cell wall layering. X-ray diffraction presented that the cellulose crystalline substance was still remained in carbonization temperature at $340^{\circ}C$, but it was not detected at $540^{\circ}C$ and over.

Moment Resistance Performance of Each Joint for Post-Beam Frame Structure (기둥-보 뼈대구조를 위한 각부 접합부의 모멘트저항성능)

  • Park, Joo-Saeng;Hwang, Kweon-Hwan
    • Journal of the Korean Wood Science and Technology
    • /
    • v.39 no.1
    • /
    • pp.8-14
    • /
    • 2011
  • Japanese larch glulam was used as structural members to develop a modern engineered wood jointing system using traditional post and beam structure. For the connections comprised of traditional joining and drift-pins, structural members are processed at a pre-cut factory. As a basic study to examine and increase the whole shear performance of portal frame, pin withdrawal test and moment resistance tests were conducted on each connection. The post and beam members with specified connectors showed good bearing performance in the wood members' joining system, column-base and beam-end. Moment rigidity was a bit better in a joint with higher slenderness ratio of drift-pin, but moment resistance performances, yield moment and maximum moment, were excellent in smaller one.

Economical and Environmental Feasibility of Cultivation under Structure Due to the Introduction of Bio-energy -Comparative Analysis of Wood Pellets and Diesel- (목재펠릿 도입에 따른 시설재배의 경제적.환경적 타당성 분석 -목재펠릿과 경유의 비교분석을 중심으로-)

  • Yang, Jeong-Soo;Yoon, Sung-Yee
    • Korean Journal of Organic Agriculture
    • /
    • v.21 no.3
    • /
    • pp.335-350
    • /
    • 2013
  • With the efforts to development of renewable energy technologies, and increasing awareness to environmental issues, the usage of wood pallets has been increasing every year since the introduction of wood pallet technology to the domestic market. until 2009, majority usage of pellet boiler was in the residential houses. In an effort to increase the distribution of wood pellet boiler to cultivation facilities with high usage of fuels, The Ministry of Agriculture and Forestry has launched a distribution project of wood pellet boiler for fuel usage as a part of the agricultural and fishery energy efficiency projects. Although only small number of farms with a heat-culturing facility have replaced from conventional boiler to pellet boiler. Although part of reason for low usage of pallet boiler is lack of understanding and information of it, the main reasons are high initial cost and uncertainty of its cost efficiency. Also, most people from agricultural industry don't realize it's significance in terms of environmental benefit due to lack of understanding in 'resource circulation' and 'adopting to climate change'. In this study, first, we did a cost-efficiency analysis of the farm which uses a diesel boiler to grow cucumber, tomato, paprika. Then we replaced the diesel boiler to a pallet boiler and measured its cost-efficiency again. By comparing the cost-efficiency of the diesel boiler with the pellet boiler, we analyzed the economic viability of pellet boiler. Then we analyzed viability of pallet boiler usage in terms of 'resource circulation' and 'adopting to climate change'. As a result of our analysis, we have found out that under the current system of government support, the energy usage varies depends of the types crops grown and the higher the energy use, the more cost efficient it is to use the pallet boiler. Also, it is economically viable to use the pallet boiler in terms of 'resource circulation' and 'adopting to climate change'.

Experiment of Lateral Load Resistance of Dori-Directional Frame in Traditional Wood Structure System (전통목구조 시스템의 도리방향 골조의 횡저항 성능에 대한 실험)

  • Lee, Young-Wook;Hong, Sung-Gul;Kim, Nam-Hee;Jung, Sung-Jin;Hwang, Jong-Kook;Bae, Boung-Sun
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.241-246
    • /
    • 2007
  • The capacity of a lateral load resistance of a joint with Jangbu-connection of Dori-directional frame in traditional wood structure system was studied, through experiments of 1/2 scaled and T-shaped 7 subassemblies of joint of Dori-directional frame for Deawoongjeon of Bongjungsa. From the experiment, it was shown that the capacity of a lateral load resistance was influenced by the vertical load confining joint and not influenced by the number of Chok and the depth of Changbang, And lateral load resistance mechanism is developed by the restraint between the vertical load and the contacting edge of column; if structure is pushed to the left, the top-right end of Pyeongju contacts with Changbang and left Changbang loses the contacts with Pyeongju and therefore only right Changbang can resist to lateral load.

  • PDF