• Title/Summary/Keyword: Wolsong 2

Search Result 106, Processing Time 0.022 seconds

Distribution of Tricholoma matsutake Singerproducing districts in Kyungsangpookdo (경상북도(慶尙北道) 송이버섯 생산지(生産地)의 분포(分布))

  • Hong, Sung Cheon;Kim, Young Ho
    • Current Research on Agriculture and Life Sciences
    • /
    • v.3
    • /
    • pp.105-111
    • /
    • 1985
  • This research is mainly focused on the distributions of pine mushroom(Tricholomo matsutake S.) in Kyungpook province, south eastern part of Korea. The study contributes to graps the trends of producing place and their distributions. The general trends of pine mushroom producing area are scattered over northern part of the province : such as Ulchin Kun, Youngyang Kun, and Bonghwa Kun. The term 'Kun' is equivalent to a country level district of administration. Less concentrated areas are listed : Munkyong Kun, Sangju Kun, Yecheon Kun, Euiseong Kun, Dalseong Kun, Kyungsan Kun, and Cheongdo Kun, which have shown growing spots in pine forest area Pine mushroom do not grow in south eastern part of province, which are Kumreung Kun, Sangju Kun, Chilgog Kun, Wolsong Kun, Koryong Kun. Producing spots classified by Kun area : 117 spots in Ulchin Kun, 70spots in Yongdeog Kun, 54 spots in Youngyang Kun, 38 spots in Munkyong Kun, 37 spots in Cheongsong Kun, 32 spots in Andong Kun, 32 spots in Sangju Kun, 26 spots in Bonghwa, 17 spots in Youngil Kun 15 spots in Yeongcheon Kun, 15 spots in Euiseong Kun, 10 spots in Gyeongsan Kun, 9 spots in Gunwi Kun, 6 spots in Cheongdo Kun, 5 spots in Yecheon Kun, 4 spots in Seonsan Kun, 2 spots in Chilgog Kun, and one spot in Weolseoog Kun.

  • PDF

An Assessment on the Contribution of $^3$He to the Tritium Generation in the CANDU PHWR (가압중수로에서 헬륨-3이 삼중수소의 생성에 미치는 영향평가)

  • Kwak, Sung-Woo;Chung, Bum-Jin
    • Journal of Radiation Protection and Research
    • /
    • v.22 no.2
    • /
    • pp.119-125
    • /
    • 1997
  • PHWR achieves high neutron economy by adopting heavy water as its moderator and coolant. On the other hand it permits much tritium generation, compared to LWR, due to the neutron capture reaction of deuterium in heavy water. Meanwhile in the reactor core, $^3He formed as the result of-decay of tritium, captures a thermal neutron and transforms to tritium again. The existing calculation models on tritium generation in PHWR neglect the contribution of $^3He$ in both moderator and coolant due to its relatively low solubility. However the neutron capture cross-section of $^3He$ is almost $1.6{\times}10^7$ times as large as that of deuterium. That means that the dissolved amount of 0.03 ppm of $^3He$ in heavy water is enough to generate the same amount of tritium as that generated by the deuterium of total heavy water in the system. This study dealt with the contribution of $^3He$ to tritium generation. As a sample case, the contribution of $^3He$ to the tritium generation in Wolsong #1 was evaluated and compared to the measured values. According to the result of this study, it is concluded that $^3He$ in coolant contributes very much to the tritium generation but that in moderator shows negligible effects due to the low solubility and $^4He$ cover gas. At the beginning of the plant operation, the contribution of $^3He$ is slightly greater than the measured value but agrees well with the measured as the operating time increases.

  • PDF

Performance Assessment of Low- and Intermediate-Level Radioactive Waste Disposal Facility in Korea by Using Complementary Indicator: Case Study with Radionuclide Flux (보조지표를 활용한 중·저준위 처분시설 성능평가: 방사성 핵종 플럭스 사례연구)

  • Jung, Kang-Il;Jeong, Mi-Seon;Park, Jin Beak
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.13 no.1
    • /
    • pp.73-86
    • /
    • 2015
  • The use of complimentary indicators, other than radiation dose and risk, to assess the safety of radioactive waste disposal has been discussed in a number of publications for providing the reasonable assurance of disposal safety and convincing the public audience. In this study, the radionuclide flux was selected as performance indicator to appraise the performance of engineered barriers and natural barrier in the Wolsong low- and intermediate-level waste disposal facility. Radionuclide flux showing the retention capability by each compartment of the disposal system is independent of assumptions in biosphere model and exposure pathways. The scenario considered as the normal scenario of disposal facility has been divided into intact or degraded silo concrete conditions. In the intact silo concrete, the radionuclide flux has been assessed with respect to the radionuclide retardation performance of each engineered barrier. In the degraded silo concrete, the radionuclide flux has been explored based on the performance degradation of engineered barriers and the relative significance of natural barrier quantitatively. The results can be used to optimally design the near-surface disposal facility being planned as the second project phase. In the future, additional complimentary indicators will be employed for strengthening the safety case for improving the public acceptance of low- and intermediate-level waste disposal facility.

Safety evaluation of type B transport container for tritium storage vessel (B형 삼중수소 운반용기 안정성 평가)

  • Lee, Min-Soo;Paek, Seung-Woo;Kim, Kwang-Rag;Ahn, Do-Hee;Yim, Sung-Paal;Chung, Hong-Suk;Choi, Heui-Joo;Choi, Jeong-Won;Son, Soon-Hwan;Song, Kyu-Min
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.5 no.2
    • /
    • pp.155-169
    • /
    • 2007
  • A transport container for a 500 kCi tritium storage vessel was developed, which could be used for the transport of metal tritide from Wolsong TRF facility to a disposal site. The structural, thermal, shielding, and confinement analyses were performed for the container in a view of Type B. As a result of structural analysis, the developed container sustained its integrity under normal and accidental conditions. The maximum temperature increase of the inner storage vessel by radiation was evaluated at $134.8^{\circ}C at room temperature. In $800^{\circ}C$ fire test, The thermal barrier of container sustained the inner vessel at $405^{\circ}C after 30 min, which temperature was allowable for the container integrity since maximum design temperature of inner vessel was $550^{\circ}C. In the evaluation of the shielding, the activity of radiation was nearly zero on the outer surface of inner vessel. Consequently the transport container for a 500 kCi tritium was evaluated to pass all the safety tests including accidental condition, so it was concluded that the designed transport container is proper to be used.

  • PDF

Current Status and Characterization of CANDU Spent Fuel for Geological Disposal System Design (심지층 처분시스템 설계를 위한 중수로 사용후핵연료 현황 및 선원항 분석)

  • Cho, Dong-Keun;Lee, Seung-Woo;Cha, Jeong-Hun;Choi, Jong-Won;Lee, Yang;Choi, Heui-Joo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.6 no.2
    • /
    • pp.155-162
    • /
    • 2008
  • Inventories to be disposed of, reference turnup, and source terms for CANDU spent fuel were evaluated for geological disposal system design. The historical and projected inventory by 2040 is expected to be 14,600 MtU under the condition of 30-year lifetime for unit 1 and 40-year lifetime for other units in Wolsong site. As a result of statistical analysis for discharge burnup of the spent fuels generated by 2007, average and stand deviation revealed 6,987 MWD/MtU and 1,167, respectively. From this result, the reference burnup was determined as 8,100 MWD/MtU which covers 84% of spent fuels in total. Source terms such as nuclide concentration for a long-term safety analysis, decay heat, thermo-mechanical analysis, and radiation intenity and spectrum was characterized by using ORIGEN-ARP containing conservativeness in the aspect of decay heat up to several thousand years. The results from this study will be useful for the design of storage and disposal facilities.

  • PDF

Development of Analysis Tool for Structural Behavior of Domestic Containment Building with Grouted Tendon (CANDU-type) (국내 부착식 텐던 격납건물(CANDU형)의 구조거동 분석 도구 개발)

  • Lee, Sang-Keun;Song, Young-Chul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5A
    • /
    • pp.901-908
    • /
    • 2006
  • The structural integrity of containment building in Nuclear Power Plants has to be verified by the ISI(In Service Inspection) because there are some variations on the structural behavior of it due to the change of the physical properties of concrete and tendon with the lapse of time. In this study, the program 'SAPONC-CANDU' which can monitor and analyze the structural behavior of the containment building with grouted tendon (CANDU-type, 'Wolsong unit-2, 3, and 4' in Korea) was developed. This program is based on the algorithm which can calculate the prediction values of the quantities of strain variation for the vibrating-wire strain gauges embedded into the concrete of the containment building under temperature and time dependent factors which are creep, shrinkage, and prestressing force. The readings of the strain gauges are used as input data for the operation of the program. And it finally provides graphically a prediction value, line and band of the quantity of strain variation for the respective strain gauges, therefore, it is thought that the site engineers are able to assess the structural integrity of the domestic containment building with grouted tendon with easy using this program.