• Title/Summary/Keyword: Wireless-power communication networks

Search Result 419, Processing Time 0.027 seconds

Performance Evaluation of Multi-Hop Transmissions in IEEE 802.15.6 UWB WBAN (IEEE 802.15.6 UWB WBAN에서 다중 홉 전송에 대한 성능 평가)

  • Kim, Ho-Sung;Hwang, Ho Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.7
    • /
    • pp.1313-1319
    • /
    • 2017
  • In this paper, we evaluate the performance of multi-hop transmissions in IEEE 802.15.6 ultra wide band (UWB) wireless body area network (WBAN). The packet structure in the physical layer, and encoding and decoding are considered for multi-hop transmissions in IEEE 802.15.6 UWB WBAN. We analyze the data success rate and energy efficiency of multi-hop transmissions with considering the length of data payload, transmission power, and distances between the nodes in IEEE 802.15.6 UWB WBAN. Through simulations, we evaluate the data success rate and energy efficiency of multi-hop transmissions with varying the length of data payload, transmission power, and distances between the nodes in IEEE 802.15.6 UWB WBAN. Finally, we can select an energy-efficient multi-hop transmission in IEEE 802.15.6 UWB WBAN depending on the length of data payload, transmission power, and distances between the nodes.

Development of Science IoT Network (ScienceLoRa) using Low Power Wide Area Technologies (저전력 장거리 통신기술을 이용한 과학기술 IoT 네트워크 (ScienceLoRa) 개발)

  • Kim, Joobum;Seok, Woojin;Kwak, Jaiseung;Kim, Kiwook
    • KNOM Review
    • /
    • v.22 no.2
    • /
    • pp.29-38
    • /
    • 2019
  • The rapid growth of IoT (Internet of Things) owing to the advancement and spread of technologies such as wireless networks, communication modules, sensors, smart terminals, etc. enables the development of new services in diverse public and private sectors. In particular, research on IoT technology and its applications has increased in the field of science. To establish an IoT infrastructure in this field, KREONET launched the wireless IoT network, called ScienceLoRa, based on low power wide area network (LPWAN). ScienceLoRa aims to collect a variety of data from sensors and utilize and analyze the collected data for research in a variety of scientific fields. In this article, the authors present the concept, current status, applications and future plans of ScienceLoRa.

Energy Efficiency of Decoupled RF Energy Harvesting Networks in Various User Distribution Environments (다양한 사용자 분포 환경에서의 비결합 무선 에너지 하베스팅 네트워크의 에너지 효율)

  • Hwang, Yu Min;Sun, Young Ghyu;Shin, Yoan;Kim, Dong In;Kim, Jin Young
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.4
    • /
    • pp.159-167
    • /
    • 2018
  • In this paper, we propose an algorithm to optimize energy efficiency in a multi-user decoupled RF energy harvesting network and experiment on the trend of energy efficiency change assuming users' various geographical distribution scenarios. In the RF energy harvesting network where both wireless data transmission and RF energy harvesting are simultaneously performed, the energy efficiency is a key indicator of network performance, and it is necessary to investigate how various factors can affect the energy efficiency. In order to increase energy efficiency effectively, we can confirm that users' distributions are important factors in the RF energy harvesting network from the simulation results.

Using Mobile Data Collectors to Enhance Energy Efficiency a nd Reliability in Delay Tolerant Wireless Sensor Networks

  • Yasmine-Derdour, Yasmine-Derdour;Bouabdellah-Kechar, Bouabdellah-Kechar;Faycal-Khelfi, Mohammed
    • Journal of Information Processing Systems
    • /
    • v.12 no.2
    • /
    • pp.275-294
    • /
    • 2016
  • A primary task in wireless sensor networks (WSNs) is data collection. The main objective of this task is to collect sensor readings from sensor fields at predetermined sinks using routing protocols without conducting network processing at intermediate nodes, which have been proved as being inefficient in many research studies using a static sink. The major drawback is that sensor nodes near a data sink are prone to dissipate more energy power than those far away due to their role as relay nodes. Recently, novel WSN architectures based on mobile sinks and mobile relay nodes, which are able to move inside the region of a deployed WSN, which has been developed in most research works related to mobile WSN mainly exploit mobility to reduce and balance energy consumption to enhance communication reliability among sensor nodes. Our main purpose in this paper is to propose a solution to the problem of deploying mobile data collectors for alleviating the high traffic load and resulting bottleneck in a sink's vicinity, which are caused by static approaches. For this reason, several WSNs based on mobile elements have been proposed. We studied two key issues in WSN mobility: the impact of the mobile element (sink or relay nodes) and the impact of the mobility model on WSN based on its performance expressed in terms of energy efficiency and reliability. We conducted an extensive set of simulation experiments. The results obtained reveal that the collection approach based on relay nodes and the mobility model based on stochastic perform better.

DEESR: Dynamic Energy Efficient and Secure Routing Protocol for Wireless Sensor Networks in Urban Environments

  • Obaidat, Mohammad S.;Dhurandher, Sanjay K.;Gupta, Deepank;Gupta, Nidhi;Asthana, Anupriya
    • Journal of Information Processing Systems
    • /
    • v.6 no.3
    • /
    • pp.269-294
    • /
    • 2010
  • The interconnection of mobile devices in urban environments can open up a lot of vistas for collaboration and content-based services. This will require setting up of a network in an urban environment which not only provides the necessary services to the user but also ensures that the network is secure and energy efficient. In this paper, we propose a secure, energy efficient dynamic routing protocol for heterogeneous wireless sensor networks in urban environments. A decision is made by every node based on various parameters like longevity, distance, battery power which measure the node and link quality to decide the next hop in the route. This ensures that the total load is distributed evenly while conserving the energy of battery-constrained nodes. The protocol also maintains a trusted population for each node through Dynamic Trust Factor (DTF) which ensures secure communication in the environment by gradually isolating the malicious nodes. The results obtained show that the proposed protocol when compared with another energy efficient protocol (MMBCR) and a widely accepted protocol (DSR) gives far better results in terms of energy efficiency. Similarly, it also outdoes a secure protocol (QDV) when it comes to detecting malicious nodes in the network.

Security Scheme for Prevent malicious Nodes in WiMAX Environment (노드간 에너지 소비를 효율적으로 분산시킨 PRML 메커니즘)

  • Jeong, Yoon-Su;Kim, Yong-Tae;Park, Nam-Kyu;Park, Gil-Cheol
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.4
    • /
    • pp.774-784
    • /
    • 2009
  • A wireless sensor network consisting of a large number of nodes with limited battery power should minimize energy consumption at each node to prolong the network lifetime. To improve the sensitivity of wireless sensor networks, an efficient scheduling algorithm and energy management technology for minimizing the energy consumption at each node is desired. ill this paper, we propose energy-aware routing mechanism for maximum lifetime and to optimize the solution quality for sensor network maintenance and to relay node from its adjacent cluster heads according to the node"s residual energy and its distance to the base station. Proposed protocol may minimize the energy consumption at each node, thus prolong the lifetime of the system regardless of where the sink is located outside or inside the cluster. Simulation results of proposed scheme show that our mechanism balances the energy consumption well among all sensor nodes and achieves an obvious improvement on the network lifetime. To verify propriety using NS-2, proposed scheme constructs sensor networks adapt to current model and evaluate consumption of total energy, energy consumption of cluster head, average energy dissipation over varying network areas with HEED and LEACH-C.

Analysis of TDM-based Ad Hoc Network Transmission Technologies (다중시간분할 방식 기반의 에드혹 망 전송기술 분석)

  • Chung, Jong-Moon;Cho, Hyung-Weon;Jin, Ki-Yong;Cho, Min-Hee;Kim, Ji-Hyun;Jeong, Wun-Cheol;Joo, Seong-Soon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.8A
    • /
    • pp.618-624
    • /
    • 2009
  • In the evolution from wireless sensor networks(WSNs) to ubiquitous sensor networks(USNs), technologies that can support intensive data-traffic loads, large number of users, improved interoperability, and extreme longevity are required. Therefore, efficient communication time coordination control and low power consumption becomes one of the most important design goals for USN MAC protocols. So far several time division multiplexed (TDM) MAC protocols have been proposed. However, since the pros and cons of existing protocols are not easy to analyze, it becomes a challenging task to design improved TOM MAC protocols. Based on this objective, this paper provides a novel protocol analysis along with a message complexity derivation and comparison of the existing TDM MAC protocols.

Energy Efficient Grid-Based WPAN Protocol for Ship Area Networks (에너지 효율성을 갖는 그리드 기반 선박 내 WPAN 프로토콜)

  • Lee, Seong Ro;Jeong, Min-A;Hur, Kyeong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.11
    • /
    • pp.1185-1191
    • /
    • 2014
  • An integrated ship area network has functionality of remote control and autonomous management of various sensors and instruments embedded or boarded in a ship. For such environment, a wireless bridge is essential to transmit control and/or managing information to sensors or instruments from a central integrated ship area network station. In this paper, one of reliable schemes of In-ship sensor networks using a Grid-based WPAN is proposed. The proposed scheme is based on a novel grid network which allows a multi-path communication, and is robust, energy efficient. The results demonstrate that the proposed Grid-based WPAN outperforms the IEEE 802.15.4 based network in terms of success ratio and power efficiency.

A CSMA/CA with Binary Exponential Back-off based Priority MAC Protocol in Tactical Wireless Networks (전술 무선망에서 2진 지수 백오프를 사용하는 CSMA/CA 기반 우선순위 적용 MAC 프로토콜 설계)

  • Byun, Ae-Ran;Son, Woong;Jang, Youn-Seon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.11
    • /
    • pp.12-19
    • /
    • 2015
  • In network-centric warfare, the communication network has played a significant role in defeating an enemy. Especially, the urgent and important data should be preferentially delivered in time. Thus, we proposed a priority MAC protocol based on CSMA/CA with Binary Exponential Back-off for tactical wireless networks. This MAC protocol suggested a PCW(Prioritized Contention Window) with differentiated back-off time by priority and a RBR(Repetitive Back-off Reset) to reset the remaining back-off time. The results showed that this proposed MAC has higher performance than those of DCF(Distributed Coordination Function) in the transmission success rate and the number of control packet transmission by reducing the packet collision. Thus, it produced more effective power consumption. In comparison with DCF, this proposed protocol is more suitable in high-traffic network.

Design and Implementation of An Authentication System for Residential Permit Parking Using Wireless Sensor Networks (무선 센서 네트워크를 이용한 거주자우선주차 인증시스템의 설계 및 구현)

  • Park, Jun-Sik;Kwon, Chun-Ja;Kim, Hyun-Chun;Kim, Brian
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.5
    • /
    • pp.1037-1045
    • /
    • 2007
  • An efficient management system for parking lots and traffic monitoring in a metropolitan city is a very important issue, which is tightly closed to qualify of life. While a residential permit parking program has been contributing to resolve the lack of parking places, there has been no autonomous authentication system due to no apparent entrance gate and smallness of each parking zone. In this paper, we propose and implement an authentication system for residential permit parking lot using wireless sensor networks, which is cost-effective and even no need for additional managing person. Through the experimental evaluation, we analyzed relationship between the life time of sensor nodes and the various values of sleep periods to minimize power consumption of the nodes, and also showed that the difference of luminance sensed by each sensor node is at least 45 or bigger between when the parking place is occupied or not, resultingly it can be used to decide whether a parking place is occupied or not by simply detecting the change of luminance sensed.