• 제목/요약/키워드: Wireless tilt sensor

검색결과 15건 처리시간 0.021초

Design of wireless sensor network and its application for structural health monitoring of cable-stayed bridge

  • Lin, H.R.;Chen, C.S.;Chen, P.Y.;Tsai, F.J.;Huang, J.D.;Li, J.F.;Lin, C.T.;Wu, W.J.
    • Smart Structures and Systems
    • /
    • 제6권8호
    • /
    • pp.939-951
    • /
    • 2010
  • A low-cost wireless sensor network (WSN) solution with highly expandable super and simple nodes was developed. The super node was designed as a sensing unit as well as a receiving terminal with low energy consumption. The simple node was designed to serve as a cheaper alternative for large-scale deployment. A 12-bit ADC inputs and DAC outputs were reserved for sensor boards to ease the sensing integration. Vibration and thermal field tests of the Chi-Lu Bridge were conducted to evaluate the WSN's performance. Integral acceleration, temperature and tilt sensing modules were constructed to simplify the task of long-term environmental monitoring on this bridge, while a star topology was used to avoid collisions and reduce power consumption. We showed that, given sufficient power and additional power amplifier, the WSN can successfully be active for more than 7 days and satisfy the half bridge 120-meter transmission requirement. The time and frequency responses of cables shocked by external force and temperature variations around cables in one day were recorded and analyzed. Finally, guidelines on power characterization of the WSN platform and selection of acceleration sensors for structural health monitoring applications were given.

PSD 센서와 Laser를 이용한 데이터 전송 시스템 구현 (Implementation of Data Transmission System Using PSD Sensor and Laser Diode Module)

  • 김명환;마근수;이재득
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 D
    • /
    • pp.3016-3018
    • /
    • 2005
  • The PSD(Position Sensitive Detector) is a sensor for detecting the position of incident light. Because of its various advantages, it is used for position and angle sensing, optical range finders, laser displacement sensing, and etc. In the previous study of the position finding system, the laser tracking robot is developed. Small data rate and unidirectionality is the characteristics of data communication both DSP-based pan/tilt control board and the robot. If we can transmit data to the target using PSD sensor and laser diode module, there is no need for communication devices such as the bluetooth and wireless module. For this reason, this paper presents the new method for data transmission. Transmit data using RS-232 is modulated by a VTF(Voltage To Frequency) converter The laser diode module transmits the modulated data. And then the PSD sensor receive that data. Demodulation process is accomplished by the system which is consisted with trans-impedance amplifier, FTV(Frequency To Voltage) converter, and etc.

  • PDF

Vibration-based identification of rotating blades using Rodrigues' rotation formula from a 3-D measurement

  • Loh, Chin-Hsiung;Huang, Yu-Ting;Hsiung, Wan-Ying;Yang, Yuan-Sen;Loh, Kenneth J.
    • Wind and Structures
    • /
    • 제21권6호
    • /
    • pp.677-691
    • /
    • 2015
  • In this study, the geometrical setup of a turbine blade is tracked. A research-scale rotating turbine blade system is setup with a single 3-axes accelerometer mounted on one of the blades. The turbine system is rotated by a controlled motor. The tilt and rolling angles of the rotating blade under operating conditions are determined from the response measurement of the single accelerometer. Data acquisition is achieved using a prototype wireless sensing system. First, the Rodrigues' rotation formula and an optimization algorithm are used to track the blade rolling angle and pitching angles of the turbine blade system. In addition, the blade flapwise natural frequency is identified by removing the rotation-related response induced by gravity and centrifuge force. To verify the result of calculations, a covariance-driven stochastic subspace identification method (SSI-COV) is applied to the vibration measurements of the blades to determine the system natural frequencies. It is thus proven that by using a single sensor and through a series of coordinate transformations and the Rodrigues' rotation formula, the geometrical setup of the blade can be tracked and the blade flapwise vibration frequency can be determined successfully.

불안정판을 이용한 평형감각 훈련시스템 개발 (Development of the Training System for Equilibrium Sense Using the Unstable Platform)

  • 박용군;유미;권대규;홍철운;김남균
    • 한국정밀공학회지
    • /
    • 제22권8호
    • /
    • pp.192-198
    • /
    • 2005
  • In this paper, we propose a new training system for the improvement of equilibrium sense using unstable platform. The equilibrium sense, which provides orientation with respect to gravity, is important to integrate the vision, somatosensory and vestibular function to maintain the equilibrium sense of the human body. In order to improve the equilibrium sense, we developed the software program such as a block game, pingpong game using Visual C++. These training system for the equilibrium sense consists of unstable platform, computer interface and software program. The unstable platform was a simple structure of elliptical-type which included tilt sensor, wireless RF module and the device of power supply. To evaluate the effect of balance training, we measured and evaluated the parameters as the moving time to the target, duration to maintain cursor in the target of screen and the error between sine curve and acquired data. As a results, the moving time to the target and duration to maintain cursor in the target was improved through the repeating training of equilibrium sense. It was concluded that this system was reliable in the evaluation of equilibrium sense. This system might be applied to clinical use as an effective balance training system.

평형 감각 증진을 위한 새로운 훈련 장치의 개발 (Development of a New Training System for the Improvement of Equibrilium Sense)

  • 이정옥;박용군;노방환;홍철운;김남균
    • 대한의용생체공학회:의공학회지
    • /
    • 제25권6호
    • /
    • pp.465-469
    • /
    • 2004
  • 본 논문에서는 불안정판(unstable platform)을 이용한 새로운 인체 평형감각 증진용 훈련 시스템을 제안하였다. 본 시스템은 불안정판, 컴퓨터 인터페이스, 다양한 소프트웨어로 구성되어 있다. 불안정판은 기울기 센서와 무선 모듈을 내장한 타원형의 단순한 구조이다. 균형 훈련의 효과를 평가하기 위해 표적으로의 이동시간(moving time to the target)과 표적 내 유지시간(duration time in the target)과 같은 파라미터(parameter)를 측정하였다. 균형 훈련은 2주간 행해졌고, 훈련 프로그램에 따라 피험자를 두 그룹으로 나누었다. 그 결과, sine curve trace (SCT)와 block game의 훈련 프로그램을 이용한 반복적인 훈련을 통해 이동시간은 짧아졌고, 유지시간은 길어졌다 특히, 피험자가 균형을 유지하기 어려웠던 방향에서의 개선이 두드러졌다. 이로써 본 시스템은 훈련 후 피험자의 평형감각을 향상시킬 수 있었고, 효과적인 평형감각 훈련시스템으로써 임상에의 적용 가능성을 확인할 수 있었다.