• Title/Summary/Keyword: Wireless sensor networks security

Search Result 281, Processing Time 0.03 seconds

Security Issues in Combined Protocol Between RFID Application and Wireless Sensor Network (RFID와 무선 센서네트워크를 융합한 프로토콜에서의 보안 문제)

  • Kim, Jung Tae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.154-155
    • /
    • 2013
  • This paper presents a user authentication scheme for healthcare application using wireless sensor networks, where wireless sensors are used for patients monitoring. These medical sensors' sense the patient body data and transmit it to the professionals. Since, the data of an individual are highly vulnerable; it must ensures that patients medical vital signs are secure, and are not exposed to an unauthorized person. In this regards, we propose a user authentication scheme for healthcare application using medical sensor networks. The proposed scheme includes: a novel two-factor user authentication, where the healthcare professionals are authenticated before access the patient's body data; a secure session key is establish between the patient sensor node and the professional at the end of user authentication. Furthermore, the analysis shows that the proposed scheme is safeguard to various practical attacks and achieves efficiency at low computation cost.

  • PDF

A Lightweight Authentication and Key Agreement Protocol in Wireless Sensor Networks (무선센서 네트워크에서 경량화된 인증과 키 동의 프로토콜)

  • Yoon, Sin-Sook;Ha, Jae-Cheol
    • Journal of Internet Computing and Services
    • /
    • v.10 no.2
    • /
    • pp.41-51
    • /
    • 2009
  • Recently, there are many researches on security to remove vulnerability which is caused by wireless communication in wireless sensor networks. To guarantee secure communication, we should basically provide key management for each node, mutual authentication and key agreement protocol between two nodes. Although many protocols are presented to supply these security services, some of them require plentiful storage memory, powerful computation and communication capacity. In this paper, we propose a lightweight and efficient authentication and key agreement protocol between two sensor nodes, which is an enhanced version of Juang's scheme. In Juang's protocol, sensor node's information used to share a secret key should be transmitted to registration center via a base station. On the contrary, since node's information in our protocol is transmitted up to only base station, the proposed scheme can decrease computation and communication cost for establishing the shared key between two nodes.

  • PDF

Dynamic Threshold Method for Isolation of Worm Hole Attack in Wireless Sensor Networks

  • Surinder Singh;Hardeep Singh Saini
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.5
    • /
    • pp.119-128
    • /
    • 2024
  • The moveable ad hoc networks are untrustworthy and susceptible to any intrusion because of their wireless interaction approach. Therefore the information from these networks can be stolen very easily just by introducing the attacker nodes in the system. The straight route extent is calculated with the help of hop count metric. For this purpose, routing protocols are planned. From a number of attacks, the wormhole attack is considered to be the hazardous one. This intrusion is commenced with the help of couple attacker nodes. These nodes make a channel by placing some sensor nodes between transmitter and receiver. The accessible system regards the wormhole intrusions in the absence of intermediary sensor nodes amid target. This mechanism is significant for the areas where the route distance amid transmitter and receiver is two hops merely. This mechanism is not suitable for those scenarios where multi hops are presented amid transmitter and receiver. In the projected study, a new technique is implemented for the recognition and separation of attacker sensor nodes from the network. The wormhole intrusions are triggered with the help of these attacker nodes in the network. The projected scheme is utilized in NS2 and it is depicted by the reproduction outcomes that the projected scheme shows better performance in comparison with existing approaches.

TinyIBAK: Design and Prototype Implementation of An Identity-based Authenticated Key Agreement Scheme for Large Scale Sensor Networks

  • Yang, Lijun;Ding, Chao;Wu, Meng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.11
    • /
    • pp.2769-2792
    • /
    • 2013
  • In this paper, we propose an authenticated key agreement scheme, TinyIBAK, based on the identity-based cryptography and bilinear paring, for large scale sensor networks. We prove the security of our proposal in the random oracle model. According to the formal security validation using AVISPA, the proposed scheme is strongly secure against the passive and active attacks, such as replay, man-in-the middle and node compromise attacks, etc. We implemented our proposal for TinyOS-2.1, analyzed the memory occupation, and evaluated the time and energy performance on the MICAz motes using the Avrora toolkits. Moreover, we deployed our proposal within the TOSSIM simulation framework, and investigated the effect of node density on the performance of our scheme. Experimental results indicate that our proposal consumes an acceptable amount of resources, and is feasible for infrequent key distribution and rekeying in large scale sensor networks. Compared with other ID-based key agreement approaches, TinyIBAK is much more efficient or comparable in performance but provides rekeying. Compared with the traditional key pre-distribution schemes, TinyIBAK achieves significant improvements in terms of security strength, key connectivity, scalability, communication and storage overhead, and enables efficient secure rekeying.

A Virtual Laboratory to Practice Mobile Wireless Sensor Networks: A Case Study on Energy Efficient and Safe Weighted Clustering Algorithm

  • Dahane, Amine;Berrached, Nasr-Eddine;Loukil, Abdelhamid
    • Journal of Information Processing Systems
    • /
    • v.11 no.2
    • /
    • pp.205-228
    • /
    • 2015
  • In this paper, we present a virtual laboratory platform (VLP) baptized Mercury allowing students to make practical work (PW) on different aspects of mobile wireless sensor networks (WSNs). Our choice of WSNs is motivated mainly by the use of real experiments needed in most courses about WSNs. These experiments require an expensive investment and a lot of nodes in the classroom. To illustrate our study, we propose a course related to energy efficient and safe weighted clustering algorithm. This algorithm which is coupled with suitable routing protocols, aims to maintain stable clustering structure, to prevent most routing attacks on sensor networks, to guaranty energy saving in order to extend the lifespan of the network. It also offers a better performance in terms of the number of re-affiliations. The platform presented here aims at showing the feasibility, the flexibility and the reduced cost of such a realization. We demonstrate the performance of the proposed algorithms that contribute to the familiarization of the learners in the field of WSNs.

ID-based Sensor Node Authentication for Multi-Layer Sensor Networks

  • Sung, Soonhwa;Ryou, Jaecheol
    • Journal of Communications and Networks
    • /
    • v.16 no.4
    • /
    • pp.363-370
    • /
    • 2014
  • Despite several years of intense research, the security and cryptography in wireless sensor networks still have a number of ongoing problems. This paper describes how identification (ID)-based node authentication can be used to solve the key agreement problem in a three-layer interaction. The scheme uses a novel security mechanism that considers the characteristics, architecture, and vulnerability of the sensors, and provides an ID-based node authentication that does not require expensive certificates. The scheme describes the routing process using a simple ID suitable for low power and ID exposure, and proposes an ID-based node authentication. This method achieves low-cost communications with an efficient protocol. Results from this study demonstrates that it improves routing performance under different node densities, and reduces the computational cost of key encryption and decryption.

Strongly-Connected Hierarchical Grid-Based Pairwise Key Predistribution Scheme for Static Wireless Sensor Networks (정적 무선 센서 네트워크를 위한 강한 연결성을 가진 계층적 그리드 기반의 키 선분배 기법)

  • Nyang Dae-Hun;Abedelaziz Mohaisen
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.7 s.349
    • /
    • pp.14-23
    • /
    • 2006
  • Wireless Sensor Network(WSN) consists of huge number of sensor nodes which are small and inexpensive with very limited resources. The public key cryptography is undesirable to be used in WSN because of the limitations of the resources. A key management and predistribution techniques are required to apply the symmetric key cryptography in such a big network. Many key predistribution techniques and approaches have been proposed, but most of-them didn't consider the real WSN assumptions, In this paper, we propose a security framework that is based on a hierarchical grid for WSN considering the proper assumptions of the communication traffic and required connectivity. We apply simple keying material distribution scheme to measure the value of our framework. Finally, we provide security analysis for possible security threats in WSN.

Analyses of Characteristics of U-Healthcare System Based on Wireless Communication

  • Kim, Jung Tae
    • Journal of information and communication convergence engineering
    • /
    • v.10 no.4
    • /
    • pp.337-342
    • /
    • 2012
  • The medical industries are integrated with information technology with mobile devices and wireless communication. The advent of mobile healthcare systems can benefit patients and hospitals, by not only providing better quality of patient care, but also by reducing administrative and medical costs for both patients and hospitals. Security issues present an interesting research topic in wireless and pervasive healthcare networks. As information technology is developed, many organizations such as government agencies, public institutions, and corporations have employed an information system to enhance the efficiency of their work processes. For the past few years, healthcare organizations throughout the world have been adopting health information systems (HIS) based on the wireless network infrastructure. As a part of the wireless network, a mobile agent has been employed at a large scale in hospitals due to its outstanding mobility. Several vulnerabilities and security requirements related to mobile devices should be considered in implementing mobile services in the hospital environment. Secure authentication and protocols with a mobile agent for applying ubiquitous sensor networks in a healthcare system environment is proposed and analyzed in this paper.

Implementation of fast stream cipher AA128 suitable for real time processing applications (실시간 처리 응용에 적합한 고속 스트림 암호 AA128 구현)

  • Kim, Gil-Ho;Cho, Gyeong-Yeon;Rhee, Kyung Hyune;Shin, Sang Uk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.10
    • /
    • pp.2207-2216
    • /
    • 2012
  • Recently, wireless Internet environment with mobile phones and wireless sensor networks with severe resource restrictions have been actively studied. Moreover, an overall security issues are essential to build a reliable and secure sensor network. One of secure solution is to develop a fast cryptographic algorithm for data encryption. Therefore, we propose a 128-bit stream cipher, AA128 which has efficient implementation of software and hardware and is suitable for real-time applications such as wireless Internet environment with mobile phones, wireless sensor networks and Digital Right Management (DRM). AA128 is stream cipher which consists of 278-bit ASR and non-linear transformation. Non-linear transformation consists of Confusion Function, Nonlinear transformation(SF0 ~ SF3) and Whitening. We show that the proposed stream cipher AA128 is faster than AES and Salsa20, and it satisfies the appropriate security requirements. Our hardware simulation result indicates that the proposed cipher algorithm can satisfy the speed requirements of real-time processing applications.

Food Security through Smart Agriculture and the Internet of Things

  • Alotaibi, Sara Jeza
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.11
    • /
    • pp.33-42
    • /
    • 2022
  • One of the most pressing socioeconomic problems confronting humanity on a worldwide scale is food security, particularly in light of the expanding population and declining land productivity. These causes have increased the number of people in the world who are at risk of starving and have caused the natural ecosystems to degrade at previously unheard-of speeds. Happily, the Internet of Things (IoT) development provides a glimmer of light for those worried about food security through smart agriculture-a development that is particularly relevant to automating food production operations in order to reduce labor expenses. When compared to conventional farming techniques, smart agriculture has the benefit of maximizing resource use through precise chemical input application and regulation of environmental factors like temperature and humidity. Farmers may make data-driven choices about the possibility of insect invasion, natural disasters, anticipated yields, and even prospective market shifts with the use of smart farming tools. The technical foundation of smart agriculture serves as a potential response to worries about food security. It is made up of wireless sensor networks and integrated cloud computing modules inside IoT.