• Title/Summary/Keyword: Wireless sensor networks (WSN)

Search Result 456, Processing Time 0.024 seconds

A Congestion Control Mechanism in Wireless Sensor Networks (무선 센서 네트워크에서 혼잡 제어 메커니즘)

  • Joo, Jeong-Ran;Lee, Sung-Keun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.2 no.2
    • /
    • pp.75-82
    • /
    • 2007
  • Wireless Sensor Network(WSN) is composed of a large number of sensor nodes and accomplish a common task such as environment monitoring or asset tracking. This paper proposed a congestion control mechanism applying the ECN mechanism and the cross layer design to cope with temporal congestion in WSN. We experimented with the proposed congestion control mechanism using ns-2 simulator and measured the throughput of sink node. Simulation results show that the suggested mechanism can improve the performance of packet throughput by dealing with the congestion of network efficiently.

  • PDF

MAP : A Balanced Energy Consumption Routing Protocol for Wireless Sensor Networks

  • Azim, Mohamed Mostafa A.
    • Journal of Information Processing Systems
    • /
    • v.6 no.3
    • /
    • pp.295-306
    • /
    • 2010
  • Network lifetime is a critical issue in Wireless Sensor Networks (WSNs). In which, a large number of sensor nodes communicate together to perform a predetermined sensing task. In such networks, the network life time depends mainly on the lifetime of the sensor nodes constituting the network. Therefore, it is essential to balance the energy consumption among all sensor nodes to ensure the network connectivity. In this paper, we propose an energy-efficient data routing protocol for wireless sensor networks. Contrary to the protocol proposed in [6], that always selects the path with minimum hop count to the base station, our proposed routing protocol may choose a longer path that will provide better distribution of the energy consumption among the sensor nodes. Simulation results indicate clearly that compared to the routing protocol proposed in [6], our proposed protocol evenly distributes the energy consumption among the network nodes thus maximizing the network life time.

Optimized Charging in Large-Scale Deployed WSNs with Mobile Charger

  • Qin, Zhenquan;Lu, Bingxian;Zhu, Ming;Sun, Liang;Shu, Lei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.12
    • /
    • pp.5307-5327
    • /
    • 2016
  • Restricted by finite battery energy, traditional wireless sensor networks (WSNs) can only maintain for a limited period of time, resulting in serious performance bottleneck in long-term deployment of WSN. Fortunately, the advancement in the wireless energy transfer technology provides a potential to free WSNs from limited energy supply and remain perpetual operational. A mobile charger called wireless charging vehicle (WCV) is employed to periodically charge each sensor node and keep its energy level above the minimum threshold. Aiming at maximizing the ratio of the WCV's vocation time over the cycle time as well as guaranteeing the perpetual operation of networks, we propose a feasible and optimal solution to this issue within the context of a real-time large-scale deployed WSN. First, we develop two different types of charging cycles: initialization cycles and renewable cycles and give relevant algorithms to construct these two cycles for each sensor node. We then formulate the optimization problem into an optimal construction algorithm and prove its correctness through theoretical analysis. Finally, we conduct extensive simulations to demonstrate the effectiveness of our proposed algorithms.

Energy-Conserving MAC Protocol in Ubiquitous Sensor Networks (유비쿼터스 센서 망에서의 에너지 절약형 매체접근 제어 프로토콜)

  • Yang, Hyun-Ho
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.1
    • /
    • pp.177-185
    • /
    • 2008
  • Research on media access control (MAC) scheme for Wireless Sensor Network (WSN) has been mainly focused on energy efficiency improvement, while interest on latency is relatively weak. However, end-to-end latency could be a critical limitation specifically in the multi-hop network such as wireless multimedia sensor networks. In this paper we propose a media access control scheme with distributed transmission power control to Improve end-to-end transmission latency as well as reduce power consumption in multi-hop wireless sensor networks. According to the simulation results, the proposed scheme is turned out to be an energy efficient scheme with improved end-to-end transmission latency.

WSN Lifetime Analysis: Intelligent UAV and Arc Selection Algorithm for Energy Conservation in Isolated Wireless Sensor Networks

  • Perumal, P.Shunmuga;Uthariaraj, V.Rhymend;Christo, V.R.Elgin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.3
    • /
    • pp.901-920
    • /
    • 2015
  • Wireless Sensor Networks (WSNs) are widely used in geographically isolated applications like military border area monitoring, battle field surveillance, forest fire detection systems, etc. Uninterrupted power supply is not possible in isolated locations and hence sensor nodes live on their own battery power. Localization of sensor nodes in isolated locations is important to identify the location of event for further actions. Existing localization algorithms consume more energy at sensor nodes for computation and communication thereby reduce the lifetime of entire WSNs. Existing approaches also suffer with less localization coverage and localization accuracy. The objective of the proposed work is to increase the lifetime of WSNs while increasing the localization coverage and localization accuracy. A novel intelligent unmanned aerial vehicle anchor node (IUAN) is proposed to reduce the communication cost at sensor nodes during localization. Further, the localization computation cost is reduced at each sensor node by the proposed intelligent arc selection (IAS) algorithm. IUANs construct the location-distance messages (LDMs) for sensor nodes deployed in isolated locations and reach the Control Station (CS). Further, the CS aggregates the LDMs from different IUANs and computes the position of sensor nodes using IAS algorithm. The life time of WSN is analyzed in this paper to prove the efficiency of the proposed localization approach. The proposed localization approach considerably extends the lifetime of WSNs, localization coverage and localization accuracy in isolated environments.

Multi-Agent System for Fault Tolerance in Wireless Sensor Networks

  • Lee, HwaMin;Min, Se Dong;Choi, Min-Hyung;Lee, DaeWon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.3
    • /
    • pp.1321-1332
    • /
    • 2016
  • Wireless sensor networks (WSN) are self-organized networks that typically consist of thousands of low-cost, low-powered sensor nodes. The reliability and availability of WSNs can be affected by faults, including those from radio interference, battery exhaustion, hardware and software failures, communication link errors, malicious attacks, and so on. Thus, we propose a novel multi-agent fault tolerant system for wireless sensor networks. Since a major requirement of WSNs is to reduce energy consumption, we use multi-agent and mobile agent configurations to manage WSNs that provide energy-efficient services. Mobile agent architecture have inherent advantages in that they provide energy awareness, scalability, reliability, and extensibility. Our multi-agent system consists of a resource manager, a fault tolerance manager and a load balancing manager, and we also propose fault-tolerant protocols that use multi-agent and mobile agent setups.

Design and Implementation of Multi-Sensor based Smart Sensor Network using Mobile Devices (모바일 디바이스를 사용한 멀티센서 기반 스마트 센서 네트워크의 설계 및 구현)

  • Koo, Bon-Hyun;Choi, Hyo-Hyun;Shon, Tae-Shik
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.5
    • /
    • pp.1-11
    • /
    • 2008
  • Wireless Sensor Networks is applied to improvement of life convenience or service like U-City as well as environment pollution, tunnel and structural health monitoring, storm, and earthquake diagnostic system. To increase the usability of sensor data and applicability, mobile devices and their facilities allow the applications of sensor networks to give mobile users and actuators the results of event detection at anytime and anywhere. In this paper, we present MUSNEMO(Multi-sensor centric Ubiquitous Smart sensor NEtwork using Mobile devices) developed system for providing more efficient and valuable information services with a variety of mobile devices and network camera integrated to WSN. Our system is performed based on IEEE 802.15.4 protocol stack. To validate system usability, we built sensor network environments where were equipped with five application sensors such magnetic, photodiode, microphone, motion and vibration. We also built and tested proposed MUSNEMO to provide a novel model for event detection systems with mobile framework.

Ad-hoc Query Processing in a Wireless Sensor Network (무선 센서 네트워크에서 순간 질의 처리 방법)

  • Yun, Sang-Hun;Cho, Haeng-Rae
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.11B
    • /
    • pp.685-692
    • /
    • 2007
  • Recent advances in wireless communications and electronics have enabled the development of low-cost, low-power, multi-functional sensors. A typical wireless sensor network (WSN) consists of a large number of sensor nodes that can measure and process data while communicating through wireless channels. In this paper, we propose a hybrid query processing (HQP) algorithm for user queries submitted to the WSN. Unlike previous algorithms that consider continuous queries only, HQP supports both continuous queries and ad-hoc queries. Specially. HQP tries to reduce energy consumption of ad-hoc queries by using query results cached at each sensor node which are created during the execution of the previous continuous query. HQP can also exploit a trade-off between energy consumption and data accuracy. We evaluate the performance of HQP under a variety of WSN configurations.

WIVA : WSN Monitoring Framework based on 3D Visualization and Augmented Reality in Mobile Devices (모바일 기기의 3차원 시각화와 증강현실에 기반한 센서네트워크 모니터링 프레임워크)

  • Koo, Bon-Hyun;Choi, Hyo-Hyun;Shon, Tae-Shik
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.46 no.2
    • /
    • pp.106-113
    • /
    • 2009
  • Recently, due to many industrial accidents at construction sites, a variety of researches for structural health monitoring (SHM) of buildings are progressing. For real site application of SHM, one of the advanced technologies has blown as wireless sensor networks (WSN). In this paper, we proposed WIVA(WSN Monitoring framework based on 3D Visualization and Augmented Reality in Mobile Devices) system that applies 3D visualization and AR technology to mobile devices with camera based on WSN in order to expand the extent of information can observe. Moreover, we performed experiments to validate effectiveness in 3D and AR mode that utilize WSN data based on IEEE 802.15.4. In real implementation scenario, we demonstrated a fire occurrence test in 3-story building miniature.

Modeling and Simulation for using Multiple Routing Protocols in Wireless Sensor Networks (무선 센서 네트워크에서 다중 라우팅 프로토콜 사용을 위한 모델링과 시뮬레이션)

  • Nam, Su Man;Cho, Tae Ho;Kim, Hyung Jong
    • Journal of the Korea Society for Simulation
    • /
    • v.29 no.3
    • /
    • pp.73-82
    • /
    • 2020
  • In the fourth industrial revolution, wireless sensor networks (WSNs) are an important element of collecting and analyzing data in a variety of environments without human intervention. This sensor network is greatly affected by topology and routing protocols. Routing protocols, which affect energy consumption, are executed after deploying sensor nodes. Once built, they are difficult to change. Before the WSN is deployed, a routing protocol is carefully selected in view of various environments and the performance of the protocol is evaluated. In this paper, we propose a model to simulate multiple routing protocols using a discrete event system specification (DEVS). The DEVS-based proposed model simulates various situations without changes and structures of the its model as algorithms of the routing protocols are implemented in its coordinators model. To verify normal behaviors of the proposed model, the number of report delivery and the energy consumption of the sensor network were compared using representative protocols LEACH and Dijkstra. As a result, it was confirmed that the proposed model executes normally in both routing protocols.