• Title/Summary/Keyword: Wireless mesh

Search Result 329, Processing Time 0.026 seconds

Performance Analysis of Routing Protocols for WLAN Mesh Networks (WLAN Mesh 망을 위한 라우팅 기법의 성능 분석)

  • Park, Jae-Sung;Lim, Yu-Jin;Ahn, Sang-Hyun
    • The KIPS Transactions:PartC
    • /
    • v.14C no.5
    • /
    • pp.417-424
    • /
    • 2007
  • Mesh networks using WLAN technology have been paid attention as a key wireless access technology. However, many technical issues still exist for its successful deployment. One of those issues is the routing problem that addresses the path setup through a WLAN mesh network for the data exchanges between a station and a wired network. Since the characteristics of a WLAN mesh network can be very dynamic, the use of single routing protocol would not fit for all environments whether it is reactive or proactive. Therefore, it is required to develop an adaptive routing protocol that modifies itself according to the changes in the network parameters. As a logical first step for the development, an analytical model considering all the dynamic features of a WLAN mesh network is required to evaluate the performance of a reactive and a proactive routing scheme. In this paper, we propose an analytical model that makes us scrutinize the impact of the network and station parameters on the performance of each routing protocol. Our model includes the size of a mesh network, the density of stations, mobility of stations. and the duration of network topology change. We applied our model to the AODV that is a representative reactive routing protocol and DSDV that is a representative proactive routing protocol to analyze the tradeoff between AODV and DSDV in dynamic network environments. Our model is expected to help developing an adaptive routing protocol for a WLAN mesh network.

Wireless mesh sensor network, the new emerging low-rate wireless network technology (메쉬 센서 네트워크 기술 동향 분석)

  • Kang, Jeong-Hoon;Lee, Min-Goo;Lim, Ho-Jung;Yoon, Myung-Hyun;Yoo, Jun-Jae
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.612-615
    • /
    • 2005
  • 메쉬 센서 네트워크 기술은 새로운 컴퓨팅 패러다임인 유비쿼터스 컴퓨팅의 진입 기술로 중요한 의미를 갖는다. 이런 새로운 컴퓨팅 패러다임의 기술이 성공적으로 발전하기 위해서는 기반이 되는 진입기술의 확산이 중요하다. 본문에서는 현재까지 진행된 메쉬 센서 네트워크 기술 동향과 실제로 구현된 응용 서비스들을 분석한다. 그리고 메쉬 센서 네트워크에대한 개년 정립과 실제 구현을 동시에 진행하고 있는 TinyOS 프로젝트에서 공개된 메쉬 센서 네트워크 구조 등, 주요 기술 부분과 응용 서비스 기술을 분석하여 지금까지의 메쉬 센서 네트워크 기술개발 상황과 향후 산업화 가능성을 파악한다.

  • PDF

On Routing Protocol and Metric for Multiradio Multichannel WMNs: Survey and Design Considerations (Multiradio Multichannel WMNs의 라우팅 프로토콜 및 메트릭: 연구 및 설계 고려 사항)

  • Gao, Hui;Lee, Hyung-Ok;Nam, Ji-Seung
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2012.01a
    • /
    • pp.105-108
    • /
    • 2012
  • Wireless mesh networks are considered a promising solution to last mile broadband. The unique characteristics of WMN impose unique requirements on designing routing protocols and metrics for WMN. However, existing routing schemes that are designed for single-channel multi-hop wireless networks may lead to inefficient routing paths in multichannel. This paper focuses on the routing problem for multi-radio multichannel WMNs. We list the challenges in designing routing algorithms for multi-radio multichannel WMNs. Then we examine the requirements and considerations for designing routing metrics according to the characteristics of multi-radio multichannel WMNs. Finally we survey and investigate the existing routing metrics in terms of their ability to satisfy these requirements.

  • PDF

Analytic Throughput Model for Network Coded TCP in Wireless Mesh Networks

  • Zhang, Sanfeng;Lan, Xiang;Li, Shuang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.9
    • /
    • pp.3110-3125
    • /
    • 2014
  • Network coding improves TCP's performance in lossy wireless networks. However, the complex congestion window evolution of network coded TCP (TCP-NC) makes the analysis of end-to-end throughput challenging. This paper analyzes the evolutionary process of TCP-NC against lossy links. An analytic model is established by applying a two-dimensional Markov chain. With maximum window size, end-to-end erasure rate and redundancy parameter as input parameters, the analytic model can reflect window evolution and calculate end-to-end throughput of TCP-NC precisely. The key point of our model is that by the novel definition of the states of Markov chain, both the number of related states and the computation complexity are substantially reduced. Our work helps to understand the factors that affect TCP-NC's performance and lay the foundation of its optimization. Extensive simulations on NS2 show that the analytic model features fairly high accuracy.

A Study on the Design and Real-Time Implementation of Robust Sensor Monitoring Device in Explosion Proof Industrial Site (방폭 산업 현장에 강인한 센서 모니터링 장치 설계 및 실시간 구현에 대한 연구)

  • Jeong-Hyun Kim
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.5
    • /
    • pp.867-874
    • /
    • 2023
  • In this paper, a wireless communication-based sensor data monitoring device with an explosion-proof (Exd IIC) case was implemented to enable installation at explosion-risk industrial sites such as plants. In existing industrial plant sites, most of the temperature sensors and vibration and impact sensors are wired up to several kilometers, which takes a lot of time and money to bury long pipes and cables. In addition, there are not many cases where some wireless devices have been applied to actual plant industry sites due to communication quality problems. Therefore, in order to solve this problem, zigbee mesh wireless communication was applied to provide high reliability wireless communication quality to industrial plant sites, and the time and cost incurred in new or additional installation of sensors could be greatly reduced. In particular, in the event of loss or error of some wireless communication devices, the communication network is automatically bypassed or recovered to enable real-time data monitoring.

A Dynamic Channel Switching Policy Through P-learning for Wireless Mesh Networks

  • Hossain, Md. Kamal;Tan, Chee Keong;Lee, Ching Kwang;Yeoh, Chun Yeow
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.2
    • /
    • pp.608-627
    • /
    • 2016
  • Wireless mesh networks (WMNs) based on IEEE 802.11s have emerged as one of the prominent technologies in multi-hop communications. However, the deployment of WMNs suffers from serious interference problem which severely limits the system capacity. Using multiple radios for each mesh router over multiple channels, the interference can be reduced and improve system capacity. Nevertheless, interference cannot be completely eliminated due to the limited number of available channels. An effective approach to mitigate interference is to apply dynamic channel switching (DCS) in WMNs. Conventional DCS schemes trigger channel switching if interference is detected or exceeds a predefined threshold which might cause unnecessary channel switching and long protocol overheads. In this paper, a P-learning based dynamic switching algorithm known as learning automaton (LA)-based DCS algorithm is proposed. Initially, an optimal channel for communicating node pairs is determined through the learning process. Then, a novel switching metric is introduced in our LA-based DCS algorithm to avoid unnecessary initialization of channel switching. Hence, the proposed LA-based DCS algorithm enables each pair of communicating mesh nodes to communicate over the least loaded channels and consequently improve network performance.

Comparison of Geometrical Factors of Dielectric Resonators Prepared for the Surface Resistance of Superconductor Films: Field Analysis vs. Computer Simulation (초전도체 박막의 표면저항 측정용 유전체 공진기에 대한 Geometrical factor의 비교 : 전자기장 해석 대 시뮬레이션)

  • Yang, Woo-Il;Jung, Ho-Sang;Kim, Myung-Su;Cho, Man-Soon;Choo, Kee-Nam;Lee, Sang-Young
    • Progress in Superconductivity
    • /
    • v.13 no.2
    • /
    • pp.97-104
    • /
    • 2011
  • In the dielectric resonator method, which has been widely used for measuring the microwave surface resistance of superconductors, accuracies in the geometrical factors (G-factors) affect the uncertainty in the measured surface resistance. We compare the G-factors of short-ended sapphire resonator as obtained by using field analysis with those by using computer simulations: The former is obtained by using the analytic expressions for the electric and the magnetic field components inside the resonator, and the latter by using computer software. The G-factors as obtained by using the latter appear to be closer to those obtained by using the former as the resonator space is divided into larger number of sub-space, i.e., a tighter mesh, with a difference of ~8 % observed for a mesh of 14400 sub-spaces reduced to ~2 % for 114996 sub-spaces. Variations in the relative uncertainty in the surface resistance of typical $YBa_2Cu_3O_{7-\delta}$ superconductor films with those in the G-factors are studied, which provides an upper limit of the relative uncertainty in the G-factors required for realizing the target uncertainty in the surface resistance. These results could be useful in estimating the optimum number of meshes for obtaining the G-factors through computer simulations.

A Probabilistic Load Balancing Scheme for Improving Service Quality of a Wireless Mesh Network (무선 메쉬 망의 서비스 품질 향상을 위한 확률적 부하 분담 기법)

  • Park, Jae-Sung;Lim, Yu-Jin;Ahn, Sang-Hyun
    • The KIPS Transactions:PartC
    • /
    • v.15C no.5
    • /
    • pp.375-382
    • /
    • 2008
  • As the use of Internet and information communication technology is being generalized, the SSL protocol is essential in Internet because the important data should be transferred securely. While the SSL protocol is designed to defend from active attack such as message forgery and message alteration, the cipher suite setting can be easily modified. If the attacker draw on a malfunction of the client system and modify the cipher suite setting to the symmetric key algorithm which has short key length, he should eavesdrop and cryptanalysis the encrypt data. In this paper, we examine the domestic web site whether they generate the security session in the symmetric key algorithm which has short key length and propose the solution of the cipher suite setting problem.

A Hybrid Authentication Scheme for Wireless MSAP Mesh Networks in the Next-Generation TMCS (차세대 전술이동통신체계 무선 MSAP 메쉬망을 위한 혼합형 인증기법)

  • Bae, Byoung-Gu;Yoon, Sun-Joong;Ko, Young-Bae
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37C no.11
    • /
    • pp.1011-1019
    • /
    • 2012
  • This paper presents a novel hybrid authentication scheme in the next-generation Tactical Mobile Communication Systems(TMCS) with wireless MSAP mesh networks. The existing centralized and distributed authentication methods for security between MSAPs may have their pros and cons. The centralized authentication method induces overhead from frequent MSAP association which leads to long authentication delay. On the other hand, the distributed authentication method requires initial sharing of the authentication information. Therefore, a more efficient authentication scheme is needed to protect the network from malicious MSAPs and also maximize efficiency of the network security. The proposed scheme provides a hybrid method of efficiently managing the authentication keys in the wireless MSAP mesh network to reduce the induced authentication message exchange overhead. Also, as the authentication method between MSAP and TMFT is different, a method of utilizing the ACR for handling the EAP packets is proposed. In overall, the proposed scheme provides efficient mutual authentication between MSAPs especially for tactical environments and is analyzed through performance evaluation to prove its superiority.

A Rate Separating Multi-Channel Protocol for Improving Channel Diversity and Node Connectivity in IEEE 802.11 Mesh Networks (IEEE 802.11 메쉬 네트워크에서 채널 다양성과 노드 연결성 향상을 위한 레이트 분할 멀티 채널 프로토콜)

  • Kim, Sok-Hyong;Suh, Young-Joo;Kwon, Dong-Hee
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.12A
    • /
    • pp.1152-1159
    • /
    • 2010
  • Wireless Mesh Networks (WMNs) provides Internet accesses to users by forming backbone networks via wireless links. A key problem of WMN is network capacity. For this, multi-channel and multi-rate functions of IEEE 802.11 can be utilized. Depending on channel assignments, multi-channel determines node connectivity and channel diversity. Also, in IEEE 802.11 multi-rate networks, the rate anomaly problem occurs, the phenomenon that low-rate links degrades the performance of high-rate links. In this paper, we propose rate separating multi-channel (RSMC) protocols that improves the node connectivity and channel diversity, and mitigates the rate anomaly problem. RSMC increases the channel diversity by forming tree-based WMNs and decreases the rate anomaly by separating different rate links on the tree via channels. In addition, it uses network connectivity (NC) algorithm to increase the node connectivity. Through simulations, we demonstrate that the RSMC shows improved performance than existing multi-channel protocols in terms of aggregate throughput, node connectivity, channel diversity.