• 제목/요약/키워드: Wireless energy harvesting

검색결과 187건 처리시간 0.023초

On the Performance Evaluation of Energy-Aware Sleep Scheduling (EASS) in Energy Harvesting WSN (EH-WSN)

  • Encarnacion, Nico N.;Yang, Hyun-Ho
    • Journal of information and communication convergence engineering
    • /
    • 제10권3호
    • /
    • pp.264-268
    • /
    • 2012
  • Tree-based structures offer assured optimal paths from the data source to the sink. Shortest routes are disregarded since these do not consider the remaining energy level of the nodes. This shortens the lifetime of the whole network. Most tree-based routing protocols, although aware of the nodes' energy, do not consider an energy aware sleep scheduling scheme. We propose an energy-aware sleep scheduling (EASS) scheme that will improve the sleep scheduling scheme of an existing tree-based routing protocol. An energy harvesting structure will be implemented on the wireless sensor network. The depth of sleep of every node will be based on the harvested energy.

차량 상태 모니터링을 위한 자가 발전 시스템 연구 (A Study on the Energy Harvesting System for the Health Monitoring of Railroad Vehicle)

  • 이제윤;김재훈;이관섭;오재근
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 춘계학술대회 논문집
    • /
    • pp.1661-1667
    • /
    • 2011
  • 본 연구에서는 지능형 철도시스템 모니터링을 위하여 열차 주행에 따른 새로운 에너지원을 전기자원화 하는 신재생 에너지 개념의 전력원인 자가발전 구동 기술에 대한 적용 가능성을 확인하기 위하여, 실제 주행 중인 고속열차를 이용하여 철도차량의 정확한 운행환경 하에서 발생하는 진동에너지를 실측하여, 진동에너지 발생으로 인한 자가발전 구동 모니터링 적용 가능성에 대하여 연구하였다.

  • PDF

압전 필름의 압전정 효과를 이용한 에너지 저장 시스템에 관한 연구 (Study on the Energy Harvesting System Using Piezoelectric Direct Effect of Piezo Film)

  • 최범규;이우훈
    • 한국정밀공학회지
    • /
    • 제25권9호
    • /
    • pp.78-85
    • /
    • 2008
  • Piezoelectric materials have been investigated as vibration energy converters to power wireless devices or MEMS devices due to the recent low power requirements of such devices and the advancement in miniaturization technology. Piezoelectric power generation can be an alternative to the traditional power source-battery because of the presence of facile vibration sources in our environment and the potential elimination of the maintenance required for large volume batteries. This paper represents the new power source which supplies energy device node. This system, called "energy harvesting system", with piezo materials scavenges extra energy such as vibration and acceleration from the environment. Then it converts the mechanical energy scavenged to electrical energy for powering device This paper explains the properties of piezo material through theoretical analysis and experiments The developed system provides a solution to overcome the critical problem of making up wireless device networks.

바이몰프 압전센서의 진동에너지 수확에 관한 연구 (A study of vibration energy harvesting for the bimorph piezoelectric sensor)

  • 김용혁
    • 센서학회지
    • /
    • 제19권4호
    • /
    • pp.313-319
    • /
    • 2010
  • Vibration energy harvesting is an attractive technique for potential powering of low power devices such as wireless sensors and portable electronic applications. Most energy generator developed to date are single vibration frequency based, and while some efforts have been made to broaden the frequency range of energy harvester. In this work, The effect of energy harvesting were investigated at various vibration frequencies, vibration beams, vibration point and test masses. The maximum output voltage of the bimorph piezoelectric cantilever was shifted according to vibration point. Vibration frequency with maximum output voltage decreased with the increasing length of vibration beam and increasing test mass. The sample with vibration beam length 0.5 L generated a peak output voltage of 32 $V_{rms}$ and shows a 45 % increase in voltage output in comparison to the corresponding original bimorph. It was found that a piezoelectric bimorph has a possibility to be as the energy harvesting cantilever, which is successfully tuned over a vibration frequency range to enable a maximum harvesting energy.

Applications of MEMS-MOSFET Hybrid Switches to Power Management Circuits for Energy Harvesting Systems

  • Song, Sang-Hun;Kang, Sungmuk;Park, Kyungjin;Shin, Seunghwan;Kim, Hoseong
    • Journal of Power Electronics
    • /
    • 제12권6호
    • /
    • pp.954-959
    • /
    • 2012
  • A hybrid switch that uses a microelectromechanical system (MEMS) switch as a gate driver of a MOSFET is applied to an energy harvesting system. The power management circuit adopting the hybrid switch provides ultralow leakage, self-referencing, and high current handling capability. Measurements show that solar energy harvester circuit utilizing the MEMS-MOSFET hybrid switch accumulates energy and charges a battery or drive a resistive load without any constant power supply and reference voltage. The leakage current during energy accumulation is less than 10 pA. The power management circuit adopting the proposed hybrid switch is believed to be an ideal solution to self-powered wireless sensor nodes in smart grid systems.

Maximizing Information Transmission for Energy Harvesting Sensor Networks by an Uneven Clustering Protocol and Energy Management

  • Ge, Yujia;Nan, Yurong;Chen, Yi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권4호
    • /
    • pp.1419-1436
    • /
    • 2020
  • For an energy harvesting sensor network, when the network lifetime is not the only primary goal, maximizing the network performance under environmental energy harvesting becomes a more critical issue. However, clustering protocols that aim at providing maximum information throughput have not been thoroughly explored in Energy Harvesting Wireless Sensor Networks (EH-WSNs). In this paper, clustering protocols are studied for maximizing the data transmission in the whole network. Based on a long short-term memory (LSTM) energy predictor and node energy consumption and supplement models, an uneven clustering protocol is proposed where the cluster head selection and cluster size control are thoroughly designed for this purpose. Simulations and results verify that the proposed scheme can outperform some classic schemes by having more data packets received by the cluster heads (CHs) and the base station (BS) under these energy constraints. The outcomes of this paper also provide some insights for choosing clustering routing protocols in EH-WSNs, by exploiting the factors such as uneven clustering size, number of clusters, multiple CHs, multihop routing strategy, and energy supplementing period.

Increasing Throughput in Energy-Based Opportunistic Spectrum Access Energy Harvesting Cognitive Radio Networks

  • Yao, Yuanyuan;Yin, Changchuan;Song, Xiaoshi;Beaulieu, Norman C.
    • Journal of Communications and Networks
    • /
    • 제18권3호
    • /
    • pp.340-350
    • /
    • 2016
  • The performance of large-scale cognitive radio (CR) networks with secondary users sustained by opportunistically harvesting radio-frequency (RF) energy from nearby primary transmissions is investigated. Using an advanced RF energy harvester, a secondary user is assumed to be able to collect ambient primary RF energy as long as it lies inside the harvesting zone of an active primary transmitter (PT). A variable power (VP) transmission mode is proposed, and an energy-based opportunistic spectrum access (OSA) strategy is considered, under which a secondary transmitter (ST) is allowed to transmit only if its harvested energy is larger than a predefined transmission threshold and it is outside the guard zones of all active PTs. The transmission probability of the STs is derived. The outage probabilities and the throughputs of the primary and the secondary networks, respectively, are characterized. Compared with prior work, the throughput can be increased by as much as 29%. The energy-based OSA strategy can be generally applied to a non-CR setup, where distributed power beacons (PBs) are deployed to power coexisting wireless signal transmitters (WSTs) in a wireless powered sensor network.

Throughput Maximization for a Primary User with Cognitive Radio and Energy Harvesting Functions

  • Nguyen, Thanh-Tung;Koo, Insoo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제8권9호
    • /
    • pp.3075-3093
    • /
    • 2014
  • In this paper, we consider an advanced wireless user, called primary-secondary user (PSU) who is capable of harvesting renewable energy and connecting to both the primary network and cognitive radio networks simultaneously. Recently, energy harvesting has received a great deal of attention from the research community and is a promising approach for maintaining long lifetime of users. On the other hand, the cognitive radio function allows the wireless user to access other primary networks in an opportunistic manner as secondary users in order to receive more throughput in the current time slot. Subsequently, in the paper we propose the channel access policy for a PSU with consideration of the energy harvesting, based on a Partially Observable Markov decision process (POMDP) in which the optimal action from the action set will be selected to maximize expected long-term throughput. The simulation results show that the proposed POMDP-based channel access scheme improves the throughput of PSU, but it requires more computations to make an action decision regarding channel access.

A multi-functional cable-damper system for vibration mitigation, tension estimation and energy harvesting

  • Jung, Hyung-Jo;Kim, In-Ho;Koo, Jeong-Hoi
    • Smart Structures and Systems
    • /
    • 제7권5호
    • /
    • pp.379-392
    • /
    • 2011
  • This paper presents a multi-functional system, consisting of a magnetorheological (MR) damper and an electromagnetic induction (EMI) device, and its applications in stay cables. The proposed system is capable of offering multiple functions: (1) mitigating excessive vibrations of cables, (2) estimating cable tension, and (3) harvesting energy for wireless sensors used health monitoring of cable-stayed bridges. In the proposed system, the EMI device, consisting of permanent magnets and a solenoid coil, can converts vibration energy into electrical energy (i.e., induced emf); hence, it acts as an energy harvesting system. Moreover, the cable tension can be estimated by using the emf signals obtained from the EMI device. In addition, the MR damper, whose damping property is controlled by the harvested energy from the EMI device, can effectively reduce excessive cable vibrations. In this study, the multi-functionality of the proposed system is experimentally evaluated by conducting a shaking table test as well as a full-scale stay cable in a laboratory setting. In the shaking table experiment, the energy harvesting capability of the EMI device for wireless sensor nodes is investigated. The performance on the cable tension estimation and the vibration mitigation are evaluated using the full-scale cable test setup. The test results show that the proposed system can sufficiently generate and store the electricity for operating a wireless sensor node twice per day, significantly alleviate vibration of a stay cable (by providing about 20% larger damping compared to the passive optimal case), and estimate the cable tension accurately within a 2.5% error.