• Title/Summary/Keyword: Wireless base station

Search Result 575, Processing Time 0.027 seconds

Analysis of Huawei's PCT Patent Applications (화웨이의 PCT 특허 출원 동향분석)

  • Kim, Marco JinHwan;Han, Yoo-Jin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.11
    • /
    • pp.2507-2517
    • /
    • 2015
  • In this research, we aim to analyze the trend of Huawei's PCT patent applications. As a result of analyzing Huawei's PCT patents by dividing temporal spans into three periods - the early 2000s, the late 2000s, and the early 2010s -, the following characteristics have been observed. First, the number of PCT patent applications has conspicuously increased from the early 2000s to the late 2000s and this trend has continued during the early 2010s. Second, in terms of a core technological field, whereas Huawei focused on the development of technologies in the 'H04L: transmission of digital information' sector during the early/late 2000s, it changed this field to the 'H04W: wireless communication networks' sector during the early 2010s. Lastly, in the case of the patent maps, it was found that while general communications technologies, as expressed with such keywords as 'user' and 'network,' were actively developed during the early/late 2000s, mobile phone-related technologies grasped this leading position, as shown with the keywords including 'user equipment,' 'base station,' and 'MME,' during the early 2010s. It was also noticeable that Huawei filed LTE-related patent applications more actively than Apple and Samsung Electronics, which implies that it will presumably pioneer the global market more aggressively than its competitors in the future.

LECSEN : Link Exchanged Chain in SEnsor Networks (링크 교환을 이용한 무선 센서 네트워크용 체인 토폴로지 : LECSEN)

  • Shin, Ji-Soo;Suh, Chang-Jin
    • The KIPS Transactions:PartC
    • /
    • v.15C no.4
    • /
    • pp.273-280
    • /
    • 2008
  • In WSN(Wireless Sensor Network) many routing algorithms such as LEACH, PEGASIS and PEDEP consisting of sensor nodes with limited energy have been proposed to extend WSN lifetime. Under the assumption of perfect fusion, these algorithms used convergecast that periodically collects sensed data from all sensor nodes to a base station. But because these schemes studied less energy consumption for a convergecast as well as fairly energy consumption altogether, the minimum energy consumption for a convergecast was not focused enough nor how topology influences to energy consumption. This paper deals with routing topology and energy consumption for a single convergecast in the following ways. We chose major WSN topology as MSC(Minimum Spanning Chain)s, MSTs, PEGASIS chains and proposed LECSEN chains. We solved the MSC length by Linear Programming(LP) and propose the LECSEN chain to compete with MST and MSC. As a result of simulation by Monte Carlo method for calculation of the topology length and standard deviation of link length, we learned that LECSEN is competitive with MST in terms of total energy consumption and shows the best with the view of even energy consumption at the sensor nodes. Thus, we concluded LECSEN is a very useful routing topology in WSN.

Cluster Coordinator Node Based Inter-Cell Interference Management Methods in Heterogeneous Networks (이기종 네트워크에서 클러스터 코디네이터 노드 기반의 셀간 간섭 관리 방법)

  • Yang, Mochan;Wu, Shanai;Shin, Oh-Soon;Shin, Yoan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.3
    • /
    • pp.277-288
    • /
    • 2013
  • 3GPP LTE-Advanced (Third Generation Partnership Project Long Term Evolution-Advanced) as a next generation mobile communication standard introduced small base stations such as femto cells or pico cells, and D2D (Device-to-Device) communications between mobiles in the proximity in order to satisfy the needs of rapidly growing wireless data traffic. A diverse range of topics has been studied to solve various interference situations which may occur within a single cell. In particular, an introduction of a small base station along with D2D communication raises important issues of how to increase the channel capacity and frequency efficiency in HetNets (Heterogeneous Networks). To this end, we propose in this paper methods to manage the interference between the macro cell and other small cells in the HetNet to improve the frequency efficiency. The proposed CCN (Cluster Coordinator Node)-assisted ICI (Inter-Cell Interference) avoidance methods exploit the CCN to control the interference in HetNet comprising of an MeNB (Macro enhanced Node-B) and a large number of small cells. A CCN which is located at the center of a number of small cells serves to avoid the interference between macro cell and small cells. We propose methods of resource allocation to avoid ICI for user equipments within the CCN coverage, and evaluate their performance through system-level computer simulations.

A Minimum Energy Consuming Mobile Device Relay Scheme for Reliable QoS Support

  • Chung, Jong-Moon;Kim, Chang Hyun;Lee, Daeyoung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.2
    • /
    • pp.618-633
    • /
    • 2014
  • Relay technology is becoming more important for mobile communications and wireless internet of things (IoT) networking because of the extended access network coverage range and reliable quality of service (QoS) it can provide at low power consumption levels. Existing mobile multihop relay (MMR) technology uses fixed-point stationary relay stations (RSs) and a divided time-frame (or frequency-band) to support the relay operation. This approach has limitations when a local fixed-point stationary RS does not exist. In addition, since the time-frame (or frequency-band) channel resources are pre-divided for the relay operation, there is no way to achieve high channel utilization using intelligent opportunistic techniques. In this paper, a different approach is considered, where the use of mobile/IoT devices as RSs is considered. In applications that use mobile/IoT devices as relay systems, due to the very limited battery energy of a mobile/IoT device and unequal channel conditions to and from the RS, both minimum energy consumption and QoS support must be considered simultaneously in the selection and configuration of RSs. Therefore, in this paper, a mobile RS is selected and configured with the objective of minimizing power consumption while satisfying end-to-end data rate and bit error rate (BER) requirements. For the RS, both downlink (DL) to the destination system (DS) (i.e., IoT device or user equipment (UE)) and uplink (UL) to the base station (BS) need to be adaptively configured (using adaptive modulation and power control) to minimize power consumption while satisfying the end-to-end QoS constraints. This paper proposes a minimum transmission power consuming RS selection and configuration (MPRSC) scheme, where the RS uses cognitive radio (CR) sub-channels when communicating with the DS, and therefore the scheme is named MPRSC-CR. The proposed MPRSC-CR scheme is activated when a DS moves out of the BS's QoS supportive coverage range. In this case, data transmissions between the RS and BS use the assigned primary channel that the DS had been using, and data transmissions between the RS and DS use CR sub-channels. The simulation results demonstrate that the proposed MPRSC-CR scheme extends the coverage range of the BS and minimizes the power consumption of the RS through optimal selection and configuration of a RS.

Clustered Tributaries-Deltas Architecture for Energy Efficient and Secure Wireless Sensor Network (무선 센서 네트워크에서 에너지 효율성과 보안성을 제공하기 위한 클러스터 기반의 Tributaries-Deltas)

  • Kim, Eun-Kyung;Seo, Jae-Won;Chae, Ki-Joon;Choi, Doo-Ho;Oh, Kyung-Hee
    • The KIPS Transactions:PartC
    • /
    • v.15C no.5
    • /
    • pp.329-342
    • /
    • 2008
  • The Sensor Networks have limitations in utilizing energies, developing energy-efficient routing protocol and secure routing protocol are important issues in Sensor Network. In the field of data management, Tributaries and Deltas(TD) which incorporates tree topology and multi-path topology effectively have been suggested to provide efficiency and robustness in data aggregation. And our research rendered hierarchical property to TD and proposed Clustering-based Tributaries-Deltas. Through this new structure, we integrated efficiency and robustness of TD structure and advantages of hierarchical Sensor Network. Clustering-based Tributaries-Deltas was proven to perform better than TD in two situations through our research. The first is when a Base Station (BS) notices received information as wrong and requests the network's sensing data retransmission and aggregation. And the second is when the BS is mobile agent with mobility. In addition, we proposed key establishment mechanism proper for the newly proposed structure which resulted in new Sensor Network structure with improved security and energy efficiency as well. We demonstrated that the new mechanism is more energy-efficient than previous one by analyzing consumed amount of energy, and realized the mechanism on TmoteSKY sensor board using TinyOS 2.0. Through this we proved that the new mechanism could be actually utilized in network design.

Design of User Clustering and Robust Beam in 5G MIMO-NOMA System Multicell (5G MIMO-NOMA 시스템 멀티 셀에서의 사용자 클러스터링 및 강력한 빔 설계)

  • Kim, Jeong-Su;Lee, Moon-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.1
    • /
    • pp.59-69
    • /
    • 2018
  • In this paper, we present a robust beamforming design to tackle the weighted sum-rate maximization (WSRM) problem in a multicell multiple-input multiple-output (MIMO) - non-orthogonal multipleaccess (NOMA) downlink system for 5G wireless communications. This work consider the imperfectchannel state information (CSI) at the base station (BS) by adding uncertainties to channel estimation matrices as the worst-case model i.e., singular value uncertainty model (SVUM). With this observation, the WSRM problem is formulated subject to the transmit power constraints at the BS. The objective problem is known as on-deterministic polynomial (NP) problem which is difficult to solve. We propose an robust beam forming design which establishes on majorization minimization (MM) technique to find the optimal transmit beam forming matrix, as well as efficiently solve the objective problem. In addition, we also propose a joint user clustering and power allocation (JUCPA) algorithm in which the best user pair is selected as a cluster to attain a higher sum-rate. Extensive numerical results are provided to show that the proposed robust beamforming design together with the proposed JUCPA algorithm significantly increases the performance in term of sum-rate as compared with the existing NOMA schemes and the conventional orthogonal multiple access (OMA) scheme.

A UHF-band Passive Temperature Sensor Tag Chip Fabricated in $0.18-{\mu}m$ CMOS Process ($0.18-{\mu}m$ CMOS 공정으로 제작된 UHF 대역 수동형 온도 센서 태그 칩)

  • Pham, Duy-Dong;Hwang, Sang-Kyun;Chung, Jin-Yong;Lee, Jong-Wook
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.10
    • /
    • pp.45-52
    • /
    • 2008
  • We investigated the design of an RF-powered, wireless temperature sensor tag chip using $0.18-{\mu}m$ CMOS technology. The transponder generates its own power supply from small incident RF signal using Schottky diodes in voltage multiplier. Ambient temperature is measured using a new low-power temperature-to-voltage converter, and an 8-bit single-slope ADC converts the measured voltage to digital data. ASK demodulator and digital control are combined to identify unique transponder (ID) sent by base station for multi-transponder applications. The measurement of the temperature sensor tag chip showed a resolution of $0.64^{\circ}C/LSB$ in the range from $20^{\circ}C$ to $100^{\circ}C$, which is suitable for environmental temperature monitoring. The chip size is $1.1{\times}0.34mm^2$, and operates at clock frequency of 100 kHz while consuming $64{\mu}W$ power. The temperature sensor required a -11 dBm RF input power, supported a conversion rate of 12.5 k-samples/sec, and a maximum error of $0.5^{\circ}C$.

Analysis of Parameters Effecting MOBILE WiMAX Connectivity (모바일 WiMAX의 연결성 매개변수 효율 분석)

  • Chowdhury, Olly Roy;Kaiser, Arif;Kabir, Ekramul;Aditya, Subrata Kumar;Park, Jang-Woo
    • Journal of Advanced Navigation Technology
    • /
    • v.18 no.1
    • /
    • pp.84-89
    • /
    • 2014
  • Worldwide Interoperability for Microwave Access (WiMAX) is an efficient technology for 20th century communication system. The technology provides broadband speed without the need for cables and is based on the IEEE 802.16 standard(also called Wireless MAN). Mobile WiMAX is defined as IEEE802.16e which is advanced and efficient technology for mobile telecommunication rather than GSM, CDMA technology. In this work link budget calculation for WiMAX have been done. Cell range have been calculated over digital modulations and they are BPSK, QPSK and QAM. Here different types of models like Cost 231 model have been used for different types of areas like open, rural and urban areas and Erceg-Greenstein model for sub-urban areas. Effect of various parameters like frequency, base station antenna height, transmission power and SNR over cell range have been studied. Analysis have done for both uplink and downlink.

Enhanced Cross-Layering Mobile IPv6 Fast Handover over IEEE 802.16e Networks in Mobile Cloud Computing Environment (모바일 클라우드 컴퓨팅 환경에서 IEEE 802.16e 네트워크에서의 향상된 교차계층 Mobile IPv6 빠른 핸드오버 기법)

  • Lee, Kyu-Jin;Seo, Dae-Hee;Nah, Jae-Hoon;Mun, Young-Song
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.12
    • /
    • pp.45-51
    • /
    • 2010
  • The main issue in mobile cloud computing is how to support a seamless service to a mobile mode. Mobile IPv6 (MIPv6) is a mobility supporting protocol which is standardized by the Internet Engineering Task Force (IETF). Mobile IPv6 fast handovers (FMIPv6) is the extension of MIPv6 which is proposed to overcome shortcomings of MIPv6. Recently, fast handovers for Mobile IPv6 over IEEE 802.16e which is one of broadband wireless access systems has been proposed by the IETF. It was designed for supporting cross-layer fast handover. In this paper, we propose an enhanced cross-layering mobile IPv6 fast handover over IEEE 802.16e networks. In our scheme, a new access router generates a new address for the mobile node by using a layer 2 trigger. We utilize a layer 2 message which is sent from a new base station to the new access router in order to inform the new access router of information of the mobile node. A previous access router sends a binding update message to the mobile node's home agent when it acquires the new address of the mobile node. We evaluate the performance of the proposed scheme compared with the existing schemes in terms of the signaling cost and the handover latency. From the results, we observe that the proposed scheme can support fast handover effectively over IEEE 802.16e networks than existing schemes.

Utilization of Rotational Beam Direction Patterns for Performance Enhancement of Cell Boundary UEs (셀 경계 단말의 성능 향상을 위한 회전성 빔 방향 패턴의 활용)

  • Lee, Donghyun;Sung, Wonjin
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.11
    • /
    • pp.12-20
    • /
    • 2013
  • Even though extensive research results have been applied to wireless cellular systems to improve their capacity and coverage, severe performance degradation experienced in cell boundary areas still remains as a major limiting factor to prohibit further improvement of user equipment (UE) throughput. In the Long Term Evolution-Advanced (LTE-A) standard of the Third Generation Partnership Project (3GPP), Some advanced techniques have been introduced to overcome this "cell-edge problem", including coordinated multipoint transmission and reception (CoMP) and inter-cell interference coordination (ICIC). In this paper, we propose yet another strategy to improve the performance of low-tier UEs by using the concept of multiple beam direction patterns (BDPs). Such multiple BDPs can be implemented using multi-layer antenna arrays stacked vertically at base station (BS) sites to transmit signals in different main beam directions. In comparison to conventional three-sector antennas with a fixed beam pattern, the proposed methods makes signal transmission in a rotational fashion to significantly enhance the reception quality of UEs located near sector (or cell) edge areas, preventing the situation where certain UEs are marginally covered by the BS for the whole transmission time. Performance evaluation results show that the proposed scheme outperforms the conventional three-sector transmission by 171% in low 5% UEs in terms of the UE throughput.