• Title/Summary/Keyword: Wireless Transmitter Receiver

Search Result 313, Processing Time 0.044 seconds

Characteristic of wireless power transmission S-Parameter for a superconductor coil

  • Jeong, In-Sung;Jung, Byung-Ik;Choi, Hyo-Sang
    • Progress in Superconductivity and Cryogenics
    • /
    • v.17 no.1
    • /
    • pp.36-39
    • /
    • 2015
  • Many studies are being conducted to implement wireless charging, for example, for cellular phones or electronic tooth brushes, via wireless power transmission technique. However, the magnetic induction method had a very short transmission distance. To solve this problem, the team of Professor Marin Soljacic proposed a magnetic resonance system that used two resonance coils with the same resonance frequency. It had an approximately 40% efficiency at a 2m distance. The system improved the low efficiency and short distance problems of the existing systems. So it could also widen the application range of wireless power transmission. Many studies on the subject are underway. In this paper, the superconductor coil was used to improve the efficiency of magnetic resonance wireless power transmission. The resonance wireless power transmission system had a source coil, a load coil, and resonance coils (a transmitter and a receiver). The efficiency and distance depended on the characteristics of the transmitter and receiver coils that had the same resonance frequency. Therefore, two resonance coils were fabricated by superconductors. The current density of the superconductor was higher than that of the normal conductor coil. Accordingly, it had a high quality-factor and improved efficiency.

Research Trends on Physical Layers in Wireless Communications Using Machine Learning (무선 통신 물리 계층의 기계학습 활용 동향)

  • Choi, Y.H.;Kang, H.D.;Kim, D.Y.;Lee, J.H.;Park, Y.O.
    • Electronics and Telecommunications Trends
    • /
    • v.33 no.2
    • /
    • pp.39-47
    • /
    • 2018
  • The fundamental problem of communication is that of transmitting a message from a source to a destination over a channel through the use of a transmitter and receiver. To derive a theoretically optimal solution, the transmitter and receiver can be divided into several processing blocks, with each component analyzed and optimized. The idea of machine learning (or deep learning) communications systems goes back to the original definition of the communi-cation problem, and optimizes the transmitter and receiver jointly. Although today's systems have been optimized over the last decades, and it seems difficult to compete with their performance, deep learning based communication is attractive owing to its simplicity and the fact that it can learn to communicate over any type of channel without the need for mathematical modeling or analysis.

A Study on Short-Range Wireless Communication System Development Using LED Based on Power Line Communication (전력선통신기반 LED를 이용한 단거리 무선통신 시스템 개발에 관한 연구)

  • Yun, Ji-Hun;Kim, Yong-Kab
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.3 no.1
    • /
    • pp.19-23
    • /
    • 2010
  • This study is to develop power line communication and short-range wireless communication system using LED. I will create optical receiver and transmitter using LED and optical sensor and connectors for display device and communication in receiver and transmitter were created. Experiment method is to signal and waveform through oscilloscope date from optical sensor after chosen a highly efficient LED. In addition, reception and transmitter of smoothly data using visible light communication program were checked. I will compliment problems through this experiment and constantly study, improve on power loss.

  • PDF

Omnidirectional Resonator in Three-Dimensional using a Globular Structure for Wireless Power Transfer (공 모양의 구조를 이용한 무선 전력 전송용 3차원 전 방향 공진기)

  • Kim, Donggeon;Seo, Chulhun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.1
    • /
    • pp.22-26
    • /
    • 2016
  • In this paper, using the globular structure designed and implemented for the transmitter and the receiver resonant wireless power transfer(WPT). The coil of the transmitter was proposed to emit a magnetic energy in three-dimensional space by winding a ball shape. Each side of the transmitter has been designed to obtain a high Q value by a spiral structure. This solves the problem that the transfer efficiency decreases rapidly depending on the location in the conventional WPT. The resonance frequency is used 6.78 MHz and the distance between the trasnitter and the receiver is 200 mm. The transfer efficiency of the proposed WPT system is higher than 40% at all direction.

Digital Bit Stream Wireless Communication System Using an Infrared Spatial Coupler for Audio/Video Signals (A/V용 적외선 송수신장치를 이용한 디지털 비트스트림 무선 통신 시스템)

  • 예창희;이광순;최덕규;송규익
    • Proceedings of the IEEK Conference
    • /
    • 2001.06a
    • /
    • pp.309-312
    • /
    • 2001
  • In this paper, we proposed a system for bit stream wireless communication using audio/video infrared transceiver and implemented a circuit. The proposed transmitter system converted bit stream into analog signal format that is similar to NTSC. Then the analog signal can be transmitted by infrared spatial coupler for A/V signals. And the receiver system recover the bit stream by inverse process of transmitter.

  • PDF

Development of Ultrasonic Transducer System for Wireless Power Transfer Part 1 : Transmitter Development (무선 전력전송을 위한 초음파 트랜스듀서 시스템 개발 Part 1: 송신소자 개발)

  • Youm, Woo-Sub;Hwang, Gunn;Yang, Woo-Seok;Lee, Sung-Q
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.9
    • /
    • pp.845-852
    • /
    • 2012
  • Recently, wireless power transfer technology is ready to be commercialized in consumer electronics. It draws attention from not only experts but also public because of its convenience and huge market. However, previous technologies such as magnetic resonance and induction coupling have limited applications because of its short transfer distance compared to device size and magnetic intensity limitation on the safety of body exposure. As an alternative, ultrasonic wireless power transfer technology is proposed. The ultrasonic wireless power transfer system is composed of transmitter which converts electrical energy to ultrasonic energy and receiver which converts the ultrasonic energy to the electrical energy again. This paper is focused on the development of high energy conversion efficiency of ultrasonic transmitter. Optimal transfer frequency is calculated based on the acoustic radiation and damping effect. The transmitter is designed through numerical analysis, and is manufactured to match the optimal transfer frequency with the size of 100 mm diameter, 12.2 mm thickness plate. The energy conversion efficiency of about 13.6 % at 2 m distance is obtained, experimentally. This result is quite high considered with the device size and the power transfering distance.

Development of ultrasonic transducer system for wireless power transfer Part 1: Transmitter development (무선 전력전송을 위한 초음파 트랜스듀서 시스템 개발 Part 1: 송신소자 개발)

  • Youm, Woo-Sub;Hwang, Gunn;Lee, Sung-Q
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.771-776
    • /
    • 2012
  • Recently, wireless power transfer technology is ready to be commercialized in consumer electronics. It draws attention of not only experts but also public because of its convenience and huge market. However, previous technologies such as magnetic resonance and induction coupling have limited applications because of its short transfer distance compared to device size and magnetic intensity limitation for the safety of body exposure. As an alternative, ultrasonic wireless power transfer technology is proposed. The ultrasonic wireless power transfer system is composed of transmitter which converts electrical energy to ultrasonic energy and receiver which converts the ultrasonic energy to the electrical energy again. This paper is focused on the development of high energy conversion efficiency of ultrasonic transmitter. Optimal transfer frequency is calculated based on the acoustic radiation and damping effect. The transmitter is designed through numerical analysis, and is manufactured to match the optimal transfer frequency with the size of 100mm diameter, 12.2 mm thickness plate. The energy conversion efficiency of about 13.6% at 2m distance is obtained, experimentally. This result is quite high considered with the device size and the power transfer distance.

  • PDF

LED Communication-based Multi-hop Wireless Transmission Network System (LED 통신기반 멀티 홉 무선 전송네트워크시스템)

  • Jo, Seung-Wan;Dung, Le-The;An, Beong-Ku
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.4
    • /
    • pp.37-42
    • /
    • 2012
  • LED is just a semiconductor which can produce light. Currently, there are active research works on LED lighting technologies according to the growth of energy-saving environmental industry. Especially, LED communication is one of the active research works in these fields. In this paper, we design a LED communication-based multi-hop transmission wireless network system. The designed system consists of a transmission circuit system(transmitter) using LED and a receiving circuit system(receiver) using PD(photo detector) and OP-Amp, and relay system which can support multi-hop wireless network service with PD, OP-Amp, and LED, respectively. The experiments for the designed system are performed as follows. One computer is connected at the end of transmitter and receiver, respectively. There are two relays between transmitter and receiver, and text files are transmitted continuously by using text transmission programming. In this experiment, we test the performance with various baud rates, transmission ranges.

Isolated Power Supply for Multiple Gate Drivers using Wireless Power Transfer System with Single-Antenna Receiver

  • Lim, Chang-Jong;Park, Shihong
    • Journal of Power Electronics
    • /
    • v.17 no.5
    • /
    • pp.1382-1390
    • /
    • 2017
  • This paper presents a power supply for gate drivers, which uses a magnetic resonance wireless power transfer system. Unlike other methods where multiple antennas are used to supply power for the gate drivers, the proposed method uses a single antenna in an insulated receiver to make multiple mutually isolated power supplies. The power transmitted via single antenna is distributed to multiple power supplies for gate drivers through resonant capacitors connected in parallel that also block DC bias. This approach has many advantages over other methods, where each gate driver needs to be supplied with power using multiple receiver antennas. The proposed method will therefore lead to a reduction in production costs and circuit area. Because the proposed circuit uses a high resonance frequency of 6.78 MHz, it is possible to implement a transmitter and a receiver using a small-sized spiral printed-circuit-board-type antenna. This paper used a single phase-leg circuit configuration to experimentally verify the performance characteristics of the proposed method.

60 GHz broad-band transceiver for wireless LAN (60 GHz 무선랜용 광대역 송ㆍ수신기)

  • 이문교;이복형;김성찬;김용호;이진구
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.40 no.11
    • /
    • pp.34-41
    • /
    • 2003
  • In this paper, 60GHz band transmitter and receiver for wireless LAN are designed and implemented using the broband amplifier and mixer fabricated by standard 0.1${\mu}{\textrm}{m}$ MIMIC process of MINT. Output power and gain of the RF transmitter are 0 ㏈m and 1.7㏈, respectively. Noise figure and gain of the receiver are 4.2㏈ and l5.7dB, respectively. Considering the sensitivity and LOS test, this system can communicate with BER of below than 10$^{-6}$ at a distance more than 35m. DSSS, which is strong for concealment and disturbance, is adopted.